
Uvod u ADO.NET

ADO.NET

• ADO.NET je skup klasa za rad sa podacima

• .NET snabdevači podataka su klase koje obezbeđuju mogućnost povezivanja sa
izvorima podataka:
• SQL Server snabdevač podataka
• OLE DB snabdevač podataka
• ostali snabdevači podataka

• Prostori imena za rad sa podacima su:
• System.Data
• System.Data.SqlClient
• System.Data.OleDb
• System.Data.SqlTypes
• System.Xml

2

Konektovani scenario

• Resursi se uzimaju sa servera sve dok se konekcija ne zatvori

• Korisnik je konstantno povezan sa izvorom podataka

• Podaci su ažurni

• Konkurentnost se lakše kontroliše

• Mora postojati konstantna mrežna konekacija

3

Korišćenje ADO.NET klasa u konektovanom
scenariju

4

• Otvaranje konekcije

• Izvršavanje komande

• Zatvaranje konekcije

Konekcije

• Pre bilo kakvog rada sa bazom podataka potrebno je kreirati a zatim
otvoriti konekciju

• U ADO.NET se kreira objekat klase XxxConnection

• System.Data.SqlClient.SqlConnection omogućava kreiranje konekcije
ka SQL Server bazi podataka

• System.Data.OleDb.OleDbConnection omogućava kreiranje konekcije
ka svakom izvoru podataka koji ima pridruženi OLE DB provajder

5

SqlConnection klasa

• SqlConnection klasa je izvedena iz klase DbConnection koja se nalazi
u prostoru imena System.Data.Common

• Klasa DbConnection predstavlja apstrakciju konekcije ka bazi
podataka

• Konkretne implementacije klase DbConnection:
• SqlConnection – konekcija ka SQL Server bazi podataka

• OleDbConnection – konekcija ka OLE DB izvorima podataka

• OdbcConnection – konekcija ka ODBC izvorima podataka

6

public abstract class DbConnection : Component, IDbConnection, IDisposable

Svojstva klase SqlConnection

• ConnectionString

• Sadrži informacije potrebne za povezivanje sa bazom podataka
(server, baza, autentifikacija, itd.)

• State

• Prikazuje trenutno stanje konekcije (Closed, Open, Connecting,
Executing, Fetching)

• Database

• Naziv baze podataka na koju je uspostavljena konekcija

• DataSource

• Naziv servera (ili instance) na koji se konekcija ostvaruje
7

8

Metode klase SqlConnection

• Open()
• Otvara konekciju ka bazi podataka

• Close()
• Zatvara konekciju ka bazi podataka

• Dispose()
• Oslobađa resurse koje konekcija koristi

• Poziva se automatski pri korišćenju using bloka

• CreateCommand()
• Kreira objekat klase SqlCommand vezan za trenutnu konekciju

Baza Magacin
CREATE DATABASE Magacin
COLLATE Serbian_Latin_100_CI_AI
GO

USE Magacin
GO

CREATE TABLE Kategorija
(
 KategorijaId INT IDENTITY(1,1) PRIMARY KEY,

Naziv NVARCHAR(70) NOT NULL UNIQUE,
Opis NVARCHAR(120) NULL

)
GO

CREATE TABLE Proizvod
(
 ProizvodId INT IDENTITY(1,1) NOT NULL PRIMARY KEY,

KategorijaId INT NOT NULL
 FOREIGN KEY REFERENCES Kategorija(KategorijaId),

Naziv NVARCHAR(120) NOT NULL UNIQUE,
Cena DECIMAL(10,2) NOT NULL,
Opis NVARCHAR(120) NULL

)
GO

9

Konekcija kod Windows autentifikacije

10

SqlConnection con = new SqlConnection();
con.ConnectionString = "konekcioni string";

SqlConnection con = new SqlConnection("konekcioni string");

Data Source – ime SQL Servera (ili instance)

Initial Catalog – ime baze podataka sa kojom se radi

Integrated Security=true – koristi Windows autentifikaciju

Windows autentifikacija:

string konekcioniString = @"Data Source=(local)\SqlExpress;
Initial Catalog=Magacin;Integrated Security=true";

using System.Data.SqlClient;

Konekcija kod SQL Server autentifikacije

11

//SQL Server autentifikacija
string konekcioniString = @"Data Source=(local)\SqlExpress;
Initial Catalog=Magacin;User ID=sa;Password=****";

Rad u konektovanom
okruženju

Upis konekcionog stringa u aplikaciona
setovanja
• Konekcioni string se može sačuvati u Application Settings

• Na ovaj način se izbegava hard-kodiranje konekcionog stringa u kodu

• Podešavanje se vrši u fajlu Settings.settings

• Tip podešavanja: Connection string

• Scope: Application

• Prednosti:
• Lakša promena konekcionog stringa

• Centralizovano upravljanje podešavanjima

• Veća bezbednost i čitljivost koda

Upis konekcionog stringa u aplikaciona
setovanja

14

Klasa Konekcija

15

static class Konekcija
{

public static string CnnMagacin
{

get
{

return Properties.Settings.Default.MagacinConnectionString;
}

}
}

static class Konekcija
{

public static string CnnMagacin =>
Properties.Settings.Default.MagacinConnectionString;

}

Klasa SqlCommand

• Koristi se za izvršavanje SQL komandi i uskladištenih
procedura nad bazom podataka

• Objekat SqlCommand omogućava direktan pristup podacima
u bazi u konektovanom okruženju

• Pomoću nje moguće je izvršavati upite:
• SELECT

• INSERT

• UPDATE

• DELETE

16

17

Svojstva klase SqlCommand

• CommandText
• SQL naredba ili naziv uskladištene procedure koja se izvršava

• Connection
• Referenca na objekat klase SqlConnection nad kojim se komanda izvršava

• CommandType
• Text -SQL komanda (podrazumevana vrednost)
• StoredProcedure

• Parameters
• Kolekcija parametara koji se prosleđuju SQL komandi ili proceduru

• Transaction
• Transakcija u okviru koje se komanda izvršava

• CommandTimeout
• Maksimalno vreme (u sekundama) čekanja na izvršavanje komande

Metode SqlCommand klase

18

Metode SqlCommand klase

• ExecuteNonQuery() – izvršava SQL komande i uskladištene
procedure koje ne vraćaju podatke (INSERT, UPDATE, DELETE)

• ExecuteReader() – izvršava komande koje vraćaju tabelarne
podatke (SELECT) i vraća objekat tipa SqlDataReader

• ExecuteScalar() – izvršava SQL komande i uskladištene
procedure koje vraćaju jednu skalarnu vrednost (COUNT,
SUM, MAX)

19

Korišćenje using bloka

• using blok se koristi za automatsko oslobađanje resursa

• Najčešće se koristi sa objektima koji implementiraju interfejs IDisposable

• Nakon izlaska iz using bloka automatski se poziva metoda Dispose()

• Kod rada sa bazom podataka obezbeđuje pravilno zatvaranje:
• konekcije

• komand

• ičitača podataka

• using ne mora da ima sopstveni blok { }
• Ako se više using naredbi napiše jedna ispod druge,svi dele isti blok koda

• Resursi se oslobađaju obrnutim redosledom kreiranja

Klasa DBNull i svojstvo Value

• Klasa DBNull predstavlja SQL NULL vrednost u .NET okruženju

• Koristi se pri radu sa bazama podataka (ADO.NET)

• Razlikuje se od null u C# jeziku

• DBNull.Value je jedina instanca klase DBNull

• Predstavlja konkretnu SQL NULL vrednost

• Uvek se koristi za proveru da li je vrednost iz baze NULL

Kreiranje i izvršavanje komande koja vraća skalarnu
vrednost

22

private void button1_Click(object sender, EventArgs e)
{

decimal cena = 0m;
string poruka = "";
try
{

using (SqlConnection konekcija = new SqlConnection(Konekcija.CnnMagacin))
using (SqlCommand komanda = new SqlCommand("SELECT AVG(Cena) FROM Proizvod", konekcija))
{

konekcija.Open();
object rezultat = komanda.ExecuteScalar();

if (rezultat == DBNull.Value)
{

poruka = "Nema podataka u tabeli Proizvod.";
}
else
{

cena = Convert.ToDecimal(rezultat);
}

}
}
catch (Exception xcp)
{

poruka = xcp.Message;
}
....

Kreiranje i izvršavanje komande koja vraća skalarnu
vrednost

23

if (poruka != "")
{

MessageBox.Show(poruka);
}
else
{

MessageBox.Show("Prosečna cena je: " + cena);
}

}

Ažuriranje baze podataka

24

private void button2_Click(object sender, EventArgs e)
{

string upit = @"UPDATE Kategorija
SET Naziv = 'Sokovi'
WHERE KategorijaId = 1";

string greska = "";

using (SqlConnection konekcija = new SqlConnection(Konekcija.CnnMagacin))

using (SqlCommand komanda = new SqlCommand(upit, konekcija))
{

try
{

konekcija.Open();
komanda.ExecuteNonQuery();

}
catch (Exception xcp)
{

greska = xcp.Message;
}

}
if (greska != "")
{

MessageBox.Show(greska);
return;

}
MessageBox.Show("Promenjena kategorija");

}

SqlDataReader objekat

SqlDataReader

• SqlDataReader je brz, read-only i forward-only kursor koji se kreće kroz skup
zapisa

• Pristup podacima korišćenjem objekta SqlDataReader sastoji se od sledećih
koraka:
• Kreira se objekat SqlConnection

• Kreira se objekat SqlCommand sa odgovarajućim SELECT upitom

• Otvara se konekcija

• Poziva se metoda SqlCommand.ExecuteReader() koja vraća objekat SqlDataReader

• Korišćenjem metode Read() prolazi se kroz sve redove rezultata

• Kada metoda Read() vrati false, završava se čitanje podataka i zatvara konekcija

26

Svojstva i metode klase SqlDataReader

• Read() metodaVrši pozicioniranje na sledeći red rezultata
• Vraća true ako postoji još redova za čitanje
• Vraća false ako je dostignut kraj skupa zapisa

• Podrazumevana pozicija SqlDataReader-a je ispred prvog reda tabele

• Pristup vrednostima kolona u redu na koji SqlDataReader trenutno pokazuje:
• Vrednosti su u izvornom formatu tipa object
• Potrebno je izvršiti kastovanje ili konverziju da bi se koristile
• Pristup po imenu ili po indeksu kolone:

• dr["ImeKolone"]
• dr[pozicijaKolone]

• Tipizirane metode za čitanje vrednosti:
• dr.GetDateTime(0)
• dr.GetDouble(0)
• dr.GetInt32(1)
• itd.

27

Entitetska klasa

28

internal class Kategorija
{
 public int KategorijaId { get; set; }
 public string Naziv { get; set; }
 public string Opis { get; set; }

public override string ToString()
{

return Naziv;
}

}

Metoda VratiKategorije()
private List<Kategorija> VratiKategorije()
{

List<Kategorija> lista = new List<Kategorija>();

using (SqlConnection konekcija = new SqlConnection(Konekcija.CnnMagacin))
using (SqlCommand komanda = new SqlCommand("SELECT * FROM Kategorija", konekcija))
{

konekcija.Open();
SqlDataReader dr = komanda.ExecuteReader();
while (dr.Read())
{

lista.Add(new Kategorija
{

KategorijaId = dr.GetInt32(0),
Naziv = dr.GetString(1),
Opis = dr.IsDBNull(2) ? "" : dr.GetString(2)

});
}

dr.Close();
}

return lista;
}

Prikaz podataka u ListBox kontroli

30

private void Form2_Load(object sender, EventArgs e)
{

listBox1.Items.Clear();
listBox1.Items.AddRange(VratiKategorije().ToArray());

}

SelectedIndexChanged događaj

31

private void listBox1_SelectedIndexChanged(object sender, EventArgs e)
{

if (listBox1.SelectedIndex > -1)
{

Kategorija k = listBox1.SelectedItem as Kategorija;
label1.Text = k.KategorijaId + " " + k.Naziv;

}
}

Rad sa parametrizovanim SQL
upitima

Parametri u SQL komandama

• Parametri se mogu posmatrati kao promenljive koje se koriste za
razmenu podataka između aplikacije i baze podataka

• Koriste se za prosleđivanje vrednosti u SQL komande na bezbedan i
kontrolisan način

• Ime parametra počinje znakom @

• Parametri važe samo u okviru SQL komande u kojoj su definisani

• Tip parametra se definiše korišćenjem standardne
enumeracijeSystem.Data.SqlDbType

• Tipičan primer korišćenja parametara je WHERE klauzula u SQL upitu

33

Izvršavanje parametarskog SQL upita

34

DECLARE @KategorijaId INT
SET @KategorijaId = 1;

--parametarski SELECT upit
SELECT ProizvodId, Naziv, Cena
FROM Proizvod
WHERE KategorijaId = @KategorijaId

--parametarski SELECT upit
SELECT ProizvodId, Naziv, Cena
FROM Proizvod
WHERE KategorijaId = @KategorijaId

Tipovi parametara

• Input
• Ulazni parametri

• Koriste se za slanje podataka iz aplikacije ka bazi podataka

• Najčešće korišćen tip parametra

• Izlazni parametri
• Koriste se za prihvatanje podataka iz baze nakon izvršavanja komande

• Često se koriste u uskladištenim procedurama

• InputOutput
• Ulazno/izlazni parametri

• Omogućavaju slanje početne vrednosti i prijem izmenjene vrednosti iz baze

35

Kreiranje ulaznih parametara

• Ulazni parametri se mogu kreirati na dva načina

• Prvi način koristi eksplicitno definisan objekat SqlParameter

• Drugi način koristi skraćenu metodu AddWithValue

• Oba načina sprečavaju SQL Injection napade

• U praksi se oba načina sreću, izbor zavisi od potrebe i konteksta

Kreiranje ulaznih parametara

37

SqlCommand komanda = new SqlCommand(
"INSERT INTO Kategorija VALUES (@Naziv, @Opis)", konekcija);

//parameter naziv
SqlParameter p1 = new SqlParameter("@Naziv", SqlDbType.NVarChar, 70);
komanda.Parameters.Add(p1);
p1.Value = textBox1.Text;

komanda.Parameters.AddWithValue("@Naziv", textBox1.Text);

Kreiranje izlaznog parametra

• Izlazni parametar se koristi za vraćanje vrednosti iz SQL komande ili
procedure

• Najčešće se koristi kod uskladištenih procedura

• Tip parametra se postavlja kao Output

• Vrednost izlaznog parametra se može pročitati nakon izvršenja SQL
komande

• Izlazni parametri se koriste za:
• vraćanje generisanih ID vrednosti
• vraćanje statusa izvršenja
• vraćanje jedne konkretne vrednosti iz baze

Kreiranje izlaznog parametra

39

string upit =
@"INSERT INTO Kategorija (Naziv, Opis)

VALUES (@Naziv, @Opis);

SET @KategorijaId = CAST(SCOPE_IDENTITY() AS int);";

SqlConnection konekcija = new SqlConnection(Konekcija.CnnMagacin);
SqlCommand cmd = new SqlCommand(upit,konekcija);

// izlazni parametar
SqlParameter param = new SqlParameter("@KategorijaId", SqlDbType.Int);
param.Direction = ParameterDirection.Output;
cmd.Parameters.Add(param);

Parametarska INSERT komanda
static int UbaciKategoriju(Kategorija k)

{
const string upit =
@"INSERT INTO Kategorija (Naziv, Opis)
VALUES (@Naziv, @Opis);

SET @KategorijaId = CAST(SCOPE_IDENTITY() AS int);";

try
{

using (SqlConnection konekcija = new SqlConnection(Konekcija.CnnMagacin))
using (SqlCommand komanda = new SqlCommand(upit, konekcija))
{

// ulazni parametri
komanda.Parameters.AddWithValue("@Naziv", k.Naziv);
komanda.Parameters.AddWithValue("@Opis", k.Opis ?? (object)DBNull.Value);

// izlazni parametar
SqlParameter izlazniId = new SqlParameter("@KategorijaId", SqlDbType.Int);
izlazniId.Direction = ParameterDirection.Output;
komanda.Parameters.Add(izlazniId);

konekcija.Open();
komanda.ExecuteNonQuery();

return (int)komanda.Parameters["@NoviId"].Value;
}

}
catch (Exception)
{

return -1;
}

}

Parametarska INSERT komanda

41

public static int UbaciKategoriju(Kategorija k)
{

const string upit =
@"INSERT INTO Kategorija (Naziv, Opis)
VALUES (@Naziv, @Opis);
SELECT CAST(SCOPE_IDENTITY() AS int);";

try
{

using (SqlConnection konekcija = new SqlConnection(Konekcija.CnnMagacin))
using (SqlCommand komanda = new SqlCommand(upit, konekcija))
{

komanda.Parameters.AddWithValue("@Naziv", k.Naziv);
komanda.Parameters.AddWithValue("@Opis", k.Opis ?? (object)DBNull.Value);

konekcija.Open();
return (int)komanda.ExecuteScalar();

}
}
catch (Exception)
{

return -1;
}

}

Parametarska UPDATE komanda
public static int PromeniKategoriju(Kategorija k)
{

const string upit =
@"UPDATE Kategorija

SET Naziv = @Naziv, Opis = @Opis
WHERE KategorijaId = @KategorijaId";

try
{

using (SqlConnection konekcija = new SqlConnection(Konekcija.cnnMagacin))
using (SqlCommand komanda = new SqlCommand(upit, konekcija))
{

komanda.Parameters.AddWithValue("@Naziv", k.Naziv);
komanda.Parameters.AddWithValue("@Opis", (object)k.Opis ?? DBNull.Value);
komanda.Parameters.AddWithValue("@KategorijaId", k.KategorijaId);

konekcija.Open();
komanda.ExecuteNonQuery();
return 0;

}
}
catch (Exception)
{

return -1;
}

}

42

Parametarska DELETE komanda

public static int ObrisiKategoriju(int id)
{

const string upit =
@"DELETE FROM Kategorija
WHERE KategorijaId = @KategorijaId";

try
{

using (SqlConnection konekcija = new SqlConnection(Konekcija.cnnMagacin))
using (SqlCommand komanda = new SqlCommand(upit, konekcija))
{

komanda.Parameters.AddWithValue("@KategorijaId", id);

konekcija.Open();
komanda.ExecuteNonQuery();
return 0;

}
}
catch (Exception)
{

return -1;
}

}

43

Pitanje 1

U konektovanom scenariju

a. resursi se uzimaju a servera tek kada se konekcija zatvori
b. resursi se uzimaju sa servera dok je konekcija otvorena
c. kreira se lokalna kopija podataka iz baze

Odgovor: b

44

Pitanje 2

Za uspostavljanje konekcije sa SQL Server bazom podataka koristi
se objekat klase:

a. SqlConnection
b. OleDbConnection
c. SqlServerConnection

Odgovor: a

45

Pitanje 3

Atribut Data Source u konekcionom stringu definiše:

a. bazu podataka sa kojom se uspostavlja konekcija
b. tabelu u bazi sa kojom se uspostavlja konekcija
c. database server sa kojim se uspostavlja konekcija

Odgovor: c

46

Pitanje 4

Da bi se koristio SQL Server.NET snabdevač podataka potrebno je ulkjučiti
prostor imena:

a. System.Data.SqlTypes
b. System.Data.SqlClient
c. System.Data.SqlServer

Odgovor: b

47

Pitanje 5

SqlDataReader objekat se kreira:

a. pozivom konstruktora SqlDataReader
b. pozivom metode CreateReader() objekta SqlConnection
c. pozivom metode ExecuteReader() objekta SqlConnection
d. pozivom metode ExecuteReader() objekta SqlCommand

Odgovor: d

48

Pitanje 6

Za izvršavanje upita nad bazom podataka koji treba da vrati jednu
numeričku vrednost koristimo metodu objekta SqlCommand:

a. ExecutDataSet()
b. ExecuteReader()
c. ExecuteScalar()
d. ExecuteNonQuery()

Odgovor: c

49

Pitanje 7

Ukoliko se drugačije ne naznači, podrazumevana vrednost
svojstva CommandType objekta SqlCommand je:

a. CommandType.Text
b. Text
c. CommandType.StoredProcedure
d. StoredProcedute

Odgovor: a

50

Pitanje 8

Izlaznom parametru objekta SqlCommand:

a. ne dodeljuje se vrednost pre izvršavanja odgovarajuće komande
b. dodeljuje se vrednost pre izvršavanja odgovarajuće komande
c. dodeljuje se vrednost pre izvršavanja odgovarajuće komande samo ako postoje I

ulazni parametri

Odgovor: a

51

Pitanje 9

Ulaznom parametru objekta SqlCommand:

a. ne dodeljuje se vrednost pre izvršavanja odgovarajuće komande
b. mora se dodeliti vrednost pre izvršavanja odgovarajuće komande
c. vrednost se može ali ne mora dodeliti

Odgovor: b

52

Pitanje 10
Dat je sledeći C# kod:

SqlParameter CityParameter = new SqlParameter("@City", SqlDbType.NVarChar, 15);
cmdKorisnikIzGrada.Parameters.Add(CityParameter);
CityParameter.Value = textBox1.Text;

Ovim kodom kreira se:

a. ulazni parametar
b. izlazni
c. parametar koji može biti i ulazni i izlazni

Odgovor: a

53

	Slide 1: Uvod u ADO.NET
	Slide 2: ADO.NET
	Slide 3: Konektovani scenario
	Slide 4: Korišćenje ADO.NET klasa u konektovanom scenariju
	Slide 5: Konekcije
	Slide 6: SqlConnection klasa
	Slide 7: Svojstva klase SqlConnection
	Slide 8: Metode klase SqlConnection
	Slide 9: Baza Magacin
	Slide 10: Konekcija kod Windows autentifikacije
	Slide 11: Konekcija kod SQL Server autentifikacije
	Slide 12: Rad u konektovanom okruženju
	Slide 13: Upis konekcionog stringa u aplikaciona setovanja
	Slide 14: Upis konekcionog stringa u aplikaciona setovanja
	Slide 15: Klasa Konekcija
	Slide 16: Klasa SqlCommand
	Slide 17: Svojstva klase SqlCommand
	Slide 18: Metode SqlCommand klase
	Slide 19: Metode SqlCommand klase
	Slide 20: Korišćenje using bloka
	Slide 21: Klasa DBNull i svojstvo Value
	Slide 22: Kreiranje i izvršavanje komande koja vraća skalarnu vrednost
	Slide 23: Kreiranje i izvršavanje komande koja vraća skalarnu vrednost
	Slide 24: Ažuriranje baze podataka
	Slide 25: SqlDataReader objekat
	Slide 26: SqlDataReader
	Slide 27: Svojstva i metode klase SqlDataReader
	Slide 28: Entitetska klasa
	Slide 29: Metoda VratiKategorije()
	Slide 30: Prikaz podataka u ListBox kontroli
	Slide 31: SelectedIndexChanged događaj
	Slide 32: Rad sa parametrizovanim SQL upitima
	Slide 33: Parametri u SQL komandama
	Slide 34: Izvršavanje parametarskog SQL upita
	Slide 35: Tipovi parametara
	Slide 36: Kreiranje ulaznih parametara
	Slide 37: Kreiranje ulaznih parametara
	Slide 38: Kreiranje izlaznog parametra
	Slide 39: Kreiranje izlaznog parametra
	Slide 40: Parametarska INSERT komanda
	Slide 41: Parametarska INSERT komanda
	Slide 42: Parametarska UPDATE komanda
	Slide 43: Parametarska DELETE komanda
	Slide 44: Pitanje 1
	Slide 45: Pitanje 2
	Slide 46: Pitanje 3
	Slide 47: Pitanje 4
	Slide 48: Pitanje 5
	Slide 49: Pitanje 6
	Slide 50: Pitanje 7
	Slide 51: Pitanje 8
	Slide 52: Pitanje 9
	Slide 53: Pitanje 10

