Uvod u ADO.NET

ADO.NET

* ADO.NET je skup klasa za rad sa podacima

* .NET snabdevaci podataka su klase koje obezbeduju mogucnost povezivanja sa
izvorima podataka:
e SQL Server snabdevac podataka
* OLE DB snabdevac podataka
e ostali snabdevaci podataka

* Prostori imena za rad sa podacima su:
* System.Data
e System.Data.SqlClient
e System.Data.OleDb
» System.Data.SqlTypes
e System.Xml

Konektovani scenario

* Resursi se uzimaju sa servera sve dok se konekcija ne zatvori
 Korisnik je konstantno povezan sa izvorom podataka

* Podaci su azurni

* Konkurentnost se lakse kontrolise

* Mora postojati konstantna mrezna konekacija

Koris¢enje ADO.NET klasa u konektovanom
scenariju

L SqlDataReader : e Otvaranje konekcije
i * |[zvrsavanje komande
_SalCommand e Zatvaranje konekcije

| |

[SqlConnection J

Konekcije

* Pre bilo kakvog rada sa bazom podataka potrebno je kreirati a zatim
otvoriti konekciju

U ADO.NET se kreira objekat klase XxxConnection

e System.Data.SqlClient.SqlConnection omogucava kreiranje konekcije
ka SQL Server bazi podataka

e System.Data.OleDb.OleDbConnection omogucava kreiranje konekcije
ka svakom izvoru podataka koji ima pridruzeni OLE DB provajder

SglConnection klasa

public abstract class DbConnection : Component, IDbConnection, IDisposable

* SglConnection klasa je izvedena iz klase DbConnection koja se nalazi
u prostoru imena System.Data.Common

* Klasa DbConnection predstavlja apstrakciju konekcije ka bazi
podataka

* Konkretne implementacije klase DbConnection:
* SglConnection — konekcija ka SQL Server bazi podataka
e OleDbConnection — konekcija ka OLE DB izvorima podataka
* OdbcConnection — konekcija ka ODBC izvorima podataka

Svojstva klase SglConnection

* ConnectionString
e Sadrzi informacije potrebne za povezivanje sa bazom podataka
(server, baza, autentifikacija, itd.)
* State
* Prikazuje trenutno stanje konekcije (Closed, Open, Connecting,
Executing, Fetching)
* Database
* Naziv baze podataka na koju je uspostavljena konekcija

* DataSource
* Naziv servera (ili instance) na koji se konekcija ostvaruje

Metode klase SglConnection

* Open()

e Otvara konekciju ka bazi podataka

* Close()

e Zatvara konekciju ka bazi podataka

* Dispose()
* Oslobada resurse koje konekcija koristi
* Poziva se automatski pri koris¢enju using bloka

* CreateCommand()
* Kreira objekat klase SglCommand vezan za trenutnu konekciju

Baza Magacin

CREATE DATABASE Magacin
COLLATE Serbian_Latin_100 CI_AI
GO

USE Magacin
GO

CREATE TABLE Kategorija

(
KategorijaId INT IDENTITY(1,1) PRIMARY KEY,
Naziv NVARCHAR(70) NOT NULL UNIQUE,
Opis NVARCHAR(120) NULL

)

GO

CREATE TABLE Proizvod
(
ProizvodId INT IDENTITY(1,1) NOT NULL PRIMARY KEY,
Kategorijald INT NOT NULL
FOREIGN KEY REFERENCES Kategorija(Kategorijald),
Naziv NVARCHAR(120) NOT NULL UNIQUE,
Cena DECIMAL(10,2) NOT NULL,
Opis NVARCHAR(120) NULL

Konekcija kod Windows autentifikacije

using System.Data.SqglClient;

SglConnection con = new SqglConnection();
con.ConnectionString = "konekcioni string";

SglConnection con = new SglConnection("konekcioni string");

Windows autentifikacija:

string konekcioniString = @"Data Source=(local)\SqlExpress;
Initial Catalog=Magacin;Integrated Security=true";

Data Source — ime SQL Servera (ili instance)
Initial Catalog — ime baze podataka sa kojom se radi
Integrated Security=true — koristi Windows autentifikaciju

10

Konekcija kod SQL Server autentifikacije

//SQL Server autentifikacija

string konekcioniString = @"Data Source=(local)\SqlExpress;
Initial Catalog=Magacin;User ID=sa;Password=****";

11

Rad u konektovanom
okruzenju

Upis konekcionog stringa u aplikaciona
setovanja

e Konekcioni string se moze sacuvati u Application Settings

* Na ovaj nacin se izbegava hard-kodiranje konekcionog stringa u kodu
* Podesavanje se vrsi u fajlu Settings.settings

* Tip podesSavanja: Connection string

e Scope: Application

* Prednosti:
* LakSa promena konekcionog stringa
* Centralizovano upravljanje podesavanjima
* Veca bezbednost i Citljivost koda

Upis konekcionog st

ringa u aplikaciona
setovanja

Connection Properties

?
Enter information to connect to the selected data source or click "Change" to choose a
different data source and/or provider.
) _ _ Data source:
” WinOOP11 - Settings.settings* - O X - -
Microsoft SQL Server (SqlClient) Change...
Settings.settings® + X - & |
— Server name:
Synchronize < View Code Access Modifier: Internal -
|GORAN-HP v Refresh
Application settings allow you to store and retrieve property settings and other information for your application Log on to the server
dynamically. For example, the application can save a user's color preferences, then retrieve them the next time it runs Authentication: i o
Learn more about application settings... Authentication: — Windows Authentication Y
| User name:
Mame Type Scope value |
. - - - - . | P d:
» MagacinConnection5tring | (Connection string) ~ | Application L
. Setting string ~ | User ~ Encrypt: Optional (False) ~
[J Trust Server Certificate
Save my password
Connect to a database
O select or enter a database name:
Magacin w
() Attach a database file:
Advanced...

Test Connection

Klasa Konekcija

static class Konekcija

{
public static string CnnMagacin
{
get
{
return Properties.Settings.Default.MagacinConnectionString;
}
}
}

static class Konekcija

{

public static string CnnMagacin =>
Properties.Settings.Default.MagacinConnectionString;

15

Klasa SglCommand

e Koristi se za izvrsavanje SQL komandi i uskladistenih
procedura nad bazom podataka

* Objekat SglCommand omogucava direktan pristup podacima
u bazi u konektovanom okruzenju

* Pomocu nje moguce je izvrSavati upite:
 SELECT
* INSERT
* UPDATE
* DELETE

Svojstva klase SglCommand

CommandText
e SQL naredba ili naziv uskladistene procedure koja se izvrSava

Connection
* Referenca na objekat klase SglConnection nad kojim se komanda izvrsava

CommandType
e Text -SQL komanda (podrazumevana vrednost)
e StoredProcedure

Parameters
* Kolekcija parametara koji se prosleduju SQL komandi ili proceduru

Transaction
* Transakcija u okviru koje se komanda izvrSava

CommandTimeout
* Maksimalno vreme (u sekundama) ¢ekanja na izvrSavanje komande

Metode SglCommand klase

azuriranih
redova

Command objekat

ExecuteScalar

ExecuteReader

ExecuteNonQuery

Baza

18

Metode SglCommand klase

e ExecuteNonQuery() —izvrsava SQL komande i uskladistene
procedure koje ne vracaju podatke (INSERT, UPDATE, DELETE)

e ExecuteReader() — izvrSava komande koje vracaju tabelarne
podatke (SELECT) i vraca objekat tipa SglDataReader

* ExecuteScalar() — izvrsava SQL komande i uskladistene
procedure koje vracaju jednu skalarnu vrednost (COUNT,
SUM, MAX)

Koris¢enje using bloka

* using blok se koristi za automatsko oslobadanje resursa
* Najcesce se koristi sa objektima koji implementiraju interfejs IDisposable
* Nakon izlaska iz using bloka automatski se poziva metoda Dispose()
* Kod rada sa bazom podataka obezbeduje pravilno zatvaranje:
* konekcije
e komand

* iCitaCa podataka

e using ne mora da ima sopstveni blok { }
* Ako se vise using naredbi napise jedna ispod druge,svi dele isti blok koda
» Resursi se oslobadaju obrnutim redosledom kreiranja

Klasa DBNull i svojstvo Value

* Klasa DBNull predstavlja SQL NULL vrednost u .NET okruzenju
* Koristi se pri radu sa bazama podataka (ADO.NET)

* Razlikuje se od null u C# jeziku

* DBNull.Value je jedina instanca klase DBNull

* Predstavlja konkretnu SQL NULL vrednost

* Uvek se koristi za proveru da li je vrednost iz baze NULL

Kreiranje i izvrSavanje komande koja vraca skalarnu

vrednost

private void buttonl_Click(object sender, EventArgs e)
{
decimal cena = Om;
string poruka = "";
try
{
using (SglConnection konekcija = new SqlConnection(Konekcija.CnnMagacin))
using (SqlCommand komanda = new SqlCommand("SELECT AVG(Cena) FROM Proizvod", konekcija))
{
konekcija.Open();
object rezultat = komanda.ExecuteScalar();

if (rezultat == DBNull.Value)
{

}
else

{
}

poruka = "Nema podataka u tabeli Proizvod.";

cena = Convert.ToDecimal(rezultat);

}
}
catch (Exception xcp)

{
}

poruka = xcp.Message;

22

Kreiranje i izvrsavanje komande koja vraca skalarnu
vrednost

if (poruka != "")
{
MessageBox.Show(poruka);
¥
else
{
MessageBox.Show("Prosecna cena je: " + cena);
¥

}

Azuriranje baze podataka

private void button2_Click(object sender, EventArgs e)

{
string upit = @"UPDATE Kategorija
SET Naziv = 'Sokovi'
WHERE KategorijaId = 1";
string greska = "";
using (SqlConnection konekcija = new SqlConnection(Konekcija.CnnMagacin))
using (SglCommand komanda = new SqlCommand(upit, konekcija))
{
try
{
konekcija.0Open();
komanda.ExecuteNonQuery();
}
catch (Exception xcp)
{
greska = xcp.Message;
}
}
if (greska !="")
{
MessageBox.Show(greska);
return;
}
MessageBox.Show("Promenjena kategorija");
}

24

SqlDataReader objekat

SglDataReader

e SglDataReader je brz, read-only i forward-only kursor koji se krece kroz skup
zapisa

* Pristup podacima koris¢enjem objekta SqlDataReader sastoji se od sledecih
koraka:
* Kreira se objekat SglConnection
* Kreira se objekat SglCommand sa odgovarajucim SELECT upitom
e Otvara se konekcija
e Poziva se metoda SqlCommand.ExecuteReader() koja vraca objekat SqlDataReader
» Koriséenjem metode Read() prolazi se kroz sve redove rezultata
* Kada metoda Read() vrati false, zavrSava se Citanje podataka i zatvara konekcija

Svojstva i metode klase SglDataReader

* Read() metodaVrsi pozicioniranje na slededi red rezultata
* Vraca true ako postoji joS redova za Citanje
* Vrada false ako je dostignut kraj skupa zapisa

* Podrazumevana pozicija SqlDataReader-a je ispred prvog reda tabele

* Pristup vrednostima kolona u redu na koji SqlDataReader trenutno pokazuje:
* Vrednosti su u izvornom formatu tipa object
* Potrebno je izvrsiti kastovanje ili konverziju da bi se koristile
* Pristup po imenu ili po indeksu kolone:
e dr["ImeKolone"]
e dr[pozicijaKolone]
e Tipizirane metode za Citanje vrednosti:
e dr.GetDateTime(0)
* dr.GetDouble(0)
e dr.GetInt32(1)
e itd.

Entitetska klasa

{

internal class Kategorija

public int Kategorijald { get; set; }
public string Naziv { get; set; }
public string Opis { get; set; }

public override string ToString()

{
}

return Naziv;

28

Metoda VratiKategorije()

private List<Kategorija> VratiKategorije()
{

List<Kategorija> lista = new List<Kategorija>();

using (SglConnection konekcija = new SqlConnection(Konekcija.CnnMagacin))
using (SglCommand komanda = new SqlCommand("SELECT * FROM Kategorija", konekcija))

{
konekcija.0pen();
SqlDataReader dr = komanda.ExecuteReader();
while (dr.Read())
{
lista.Add(new Kategorija
{
Kategorijald = dr.GetInt32(0),
Naziv = dr.GetString(1),
Opis = dr.IsDBNull(2) ? "" : dr.GetString(2)
});
}
dr.Close();
}

return lista;

Prikaz podataka u ListBox kontroli

private void Form2_Load(object sender, EventArgs e)

{
listBox1l.Items.Clear();

listBox1l.Items.AddRange(VratiKategorije().ToArray());

| 85 Form?2 = O =

Pica

Mgk i mlecni proizvodi
Slatkisi i grickalice

Hieb i peciva

3 Slatkisi i grickalice

30

SelectedIndexChanged dogadaj

private void listBoxl_SelectedIndexChanged(object sender, EventArgs e)

{
if (listBoxl.SelectedIndex > -1)

{

Kategorija k = 1listBoxl.SelectedItem as Kategorija;
labell.Text = k.KategorijaId + " " + k.Naziv;

31

Rad sa parametrizovanim SQL
upitima

Parametri u SQL komandama

* Parametri se mogu posmatrati kao promenljive koje se koriste za
razmenu podataka izmedu aplikacije i baze podataka

 Koriste se za prosledivanje vrednosti u SQL komande na bezbedan i
kontrolisan nacin

* Ime parametra pocinje znakom @
e Parametri vaze samo u okviru SQL komande u kojoj su definisani

* Tip parametra se definise koris¢enjem standardne
enumeracijeSystem.Data.SqlDbType

* Tipican primer koris¢enja parametara je WHERE klauzula u SQL upitu

|zvrSavanje parametarskog SQL upita

--parametarski SELECT upit

SELECT ProizvodId, Naziv, Cena
FROM Proizvod

WHERE Kategorijald = @Kategorijald

DECLARE @KategorijaIld INT
SET @Kategorijald = 1;

--parametarski SELECT upit

SELECT ProizvodId, Naziv, Cena
FROM Proizvod

WHERE Kategorijald = @Kategorijald

Tipovi parametara

* Input
* Ulazni parametri
* Koriste se za slanje podataka iz aplikacije ka bazi podataka
* Najcesce koriscen tip parametra

* |zlazni parametri

 Koriste se za prihvatanje podataka iz baze nakon izvrSavanja komande
* Cesto se koriste u uskladidtenim procedurama

* InputOutput
e Ulazno/izlazni parametri
* Omogucavaju slanje pocCetne vrednosti i prijem izmenjene vrednosti iz baze

Kreiranje ulaznih parametara

* Ulazni parametri se mogu kreirati na dva nacina

* Prvi nacin koristi eksplicitno definisan objekat SqglParameter

* Drugi nacCin koristi skracenu metodu AddWithValue

* Oba nacina sprecavaju SQL Injection napade

* U praksi se oba nacina srecu, izbor zavisi od potrebe i konteksta

Kreiranje ulaznih parametara

SqglCommand komanda = new SqlCommand/(
"INSERT INTO Kategorija VALUES (@Naziv, @Opis)", konekcija);

//parameter naziv

SqlParameter pl = new SqlParameter("@Naziv", SqlDbType.NVarChar, 70);
komanda.Parameters.Add(pl);

pl.Value = textBoxl.Text;

komanda.Parameters.AddWithValue("@Naziv", textBoxl.Text);

37

Kreiranje izlaznog parametra

* |zlazni parametar se koristi za vracanje vrednosti iz SQL komande ili
procedure

* Najcesce se koristi kod uskladistenih procedura
* Tip parametra se postavlja kao Output

* VVrednost izlaznog parametra se moze procitati nakon izvrsenja SQL
komande

* Izlazni parametri se koriste za:
* vracanje generisanih ID vrednosti
e vracanje statusa izvrsenja
* vraCanje jedne konkretne vrednosti iz baze

Kreiranje izlaznog parametra

string upit =
@"INSERT INTO Kategorija (Naziv, Opis)
VALUES (@Naziv, @Opis);

SET @KategorijaId = CAST(SCOPE_IDENTITY() AS int);";

SqlConnection konekcija = new SqlConnection(Konekcija.CnnMagacin);
SqlCommand cmd = new SqlCommand(upit,konekcija);

// izlazni parametar

SqlParameter param = new SqlParameter("@KategorijaId", SqlDbType.Int);
param.Direction = ParameterDirection.Output;

cmd . Parameters.Add(param) ;

39

Parametarska INSERT komanda

{

static int UbaciKategoriju(Kategorija k)

const string upit =
@"INSERT INTO Kategorija (Naziv, Opis)
VALUES (@Naziv, @Opis);

SET @KategorijaId = CAST(SCOPE_IDENTITY() AS int);";

try

{
using (SqlConnection konekcija = new SqlConnection(Konekcija.CnnMagacin))
using (SqlCommand komanda = new SqlCommand(upit, konekcija))

// ulazni parametri
komanda.Parameters.AddwWithValue("@Naziv", k.Naziv);
komanda.Parameters.AddWithValue("@0Opis", k.Opis ?? (object)DBNull.Value);

// izlazni parametar

SqlParameter izlazniId = new SqlParameter("@KategorijaId", SqlDbType.Int);
izlazniId.Direction = ParameterDirection.Output;
komanda.Parameters.Add(izlazniId);

konekcija.Open();
komanda.ExecuteNonQuery();

return (int)komanda.Parameters["@NoviId"].Value;

}
}
catch (Exception)
{
return -1;
}

Parametarska INSERT komanda

public static int UbaciKategoriju(Kategorija k)
{
const string upit =
@"INSERT INTO Kategorija (Naziv, Opis)
VALUES (@Naziv, @Opis);
SELECT CAST(SCOPE_IDENTITY() AS int);";
try
{
using (SglConnection konekcija = new SqglConnection(Konekcija.CnnMagacin))
using (SglCommand komanda = new SqlCommand(upit, konekcija))
{
komanda.Parameters.AddwithValue("@Naziv", k.Naziv);
komanda.Parameters.AddwWithValue("@0Opis", k.Opis ?? (object)DBNull.Value);
konekcija.Open();
return (int)komanda.ExecuteScalar();
}
}
catch (Exception)
{
return -1;
}
}

41

Parametarska UPDATE komanda

public static int PromeniKategoriju(Kategorija k)

{
const string upit =
@"UPDATE Kategorija
SET Naziv = @Naziv, Opis = @Opis
WHERE KategorijaId = @KategorijaId";
try
{
using (SglConnection konekcija = new SqlConnection(Konekcija.cnnMagacin))
using (SqlCommand komanda = new SqlCommand(upit, Konekcija))
{
komanda.Parameters.AddWithValue("@Naziv", k.Naziv);
komanda.Parameters.AddWithValue("@0pis", (object)k.Opis ?? DBNull.Value);
komanda.Parameters.AddwWithValue("@KategorijaId", k.KategorijaId);
konekcija.Open();
komanda.ExecuteNonQuery();
return 0O;
}
}
catch (Exception)
{
return -1;
}
}

42

Parametarska DELETE komanda

public static int ObrisiKategoriju(int id)

{
const string upit =
@"DELETE FROM Kategorija
WHERE Kategorijald = @KategorijaId";
try
{
using (SglConnection konekcija = new SqlConnection(Konekcija.cnnMagacin))
using (SqlCommand komanda = new SqlCommand(upit, Konekcija))
{
komanda.Parameters.AddwWithValue("@KategorijaId", id);
konekcija.0Open();
komanda.ExecuteNonQuery();
return 0O;
}
}
catch (Exception)
{
return -1;
}
}

43

Pitanje 1

U konektovanom scenariju

a. resursi se uzimaju a servera tek kada se konekcija zatvori
b. resursi se uzimaju sa servera dok je konekcija otvorena
c. kreira se lokalna kopija podataka iz baze

Odgovor: b

Pitanje 2

Za uspostavljanje konekcije sa SQL Server bazom podataka koristi
se objekat klase:

a. SglConnection
b. OleDbConnection
c. SqlServerConnection

Odgovor: a

Pitanje 3

Atribut Data Source u konekcionom stringu definise:

a. bazu podataka sa kojom se uspostavlja konekcija
b. tabelu u bazi sa kojom se uspostavlja konekcija
c. database server sa kojim se uspostavlja konekcija

Odgovor: c

Pitanje 4

Da bi se koristio SQL Server.NET snabdevac podataka potrebno je ulkjuciti
prostor imena:

a. System.Data.SqlTypes
b. System.Data.SqlClient
c. System.Data.SqlServer

Odgovor: b

Pitanje 5

SqglDataReader objekat se kreira:

pozivom konstruktora SqlDataReader

pozivom metode CreateReader() objekta SglConnection
pozivom metode ExecuteReader() objekta SglConnection
pozivom metode ExecuteReader() objekta SqlCommand

o 0 T o

Odgovor: d

Pitanje 6

Za izvrsavanje upita nad bazom podataka koji treba da vrati jednu
numericku vrednost koristimo metodu objekta SqlCommand:

a. ExecutDataSet()

b. ExecuteReader()

c. ExecuteScalar()

d. ExecuteNonQuery()

Odgovor: c

Pitanje /

Ukoliko se drugacije ne naznaci, podrazumevana vrednost
svojstva CommandType objekta SqlCommand je:

a. CommandType.Text

b. Text

c. CommandType.StoredProcedure
d. StoredProcedute

Odgovor: a

Pitanje 8

Izlaznom parametru objekta SqlCommand:

a. ne dodeljuje se vrednost pre izvrSavanja odgovarajuce komande

b. dodeljuje se vrednost pre izvrsavanja odgovarajuce komande

c. dodeljuje se vrednost pre izvrSavanja odgovarajuce komande samo ako postoje |
ulazni parametri

Odgovor: a

Pitanje 9

Ulaznom parametru objekta SqlCommand:

a. ne dodeljuje se vrednost pre izvrSavanja odgovarajuce komande
b. mora se dodeliti vrednost pre izvrSavanja odgovaraju¢e komande
c. vrednost se moze ali ne mora dodeliti

Odgovor: b

Pitanje 10

Dat je sledeci C# kod:

SqlParameter CityParameter = new SqglParameter("@City", SqlDbType.NVarChar, 15);
cmdKorisnikIzGrada.Parameters.Add(CityParameter);
CityParameter.Value = textBoxl.Text;

Ovim kodom kreira se:

a. ulazni parametar
b. izlazni
c. parametar koji moze biti i ulazni i izlazni

Odgovor: a

	Slide 1: Uvod u ADO.NET
	Slide 2: ADO.NET
	Slide 3: Konektovani scenario
	Slide 4: Korišćenje ADO.NET klasa u konektovanom scenariju
	Slide 5: Konekcije
	Slide 6: SqlConnection klasa
	Slide 7: Svojstva klase SqlConnection
	Slide 8: Metode klase SqlConnection
	Slide 9: Baza Magacin
	Slide 10: Konekcija kod Windows autentifikacije
	Slide 11: Konekcija kod SQL Server autentifikacije
	Slide 12: Rad u konektovanom okruženju
	Slide 13: Upis konekcionog stringa u aplikaciona setovanja
	Slide 14: Upis konekcionog stringa u aplikaciona setovanja
	Slide 15: Klasa Konekcija
	Slide 16: Klasa SqlCommand
	Slide 17: Svojstva klase SqlCommand
	Slide 18: Metode SqlCommand klase
	Slide 19: Metode SqlCommand klase
	Slide 20: Korišćenje using bloka
	Slide 21: Klasa DBNull i svojstvo Value
	Slide 22: Kreiranje i izvršavanje komande koja vraća skalarnu vrednost
	Slide 23: Kreiranje i izvršavanje komande koja vraća skalarnu vrednost
	Slide 24: Ažuriranje baze podataka
	Slide 25: SqlDataReader objekat
	Slide 26: SqlDataReader
	Slide 27: Svojstva i metode klase SqlDataReader
	Slide 28: Entitetska klasa
	Slide 29: Metoda VratiKategorije()
	Slide 30: Prikaz podataka u ListBox kontroli
	Slide 31: SelectedIndexChanged događaj
	Slide 32: Rad sa parametrizovanim SQL upitima
	Slide 33: Parametri u SQL komandama
	Slide 34: Izvršavanje parametarskog SQL upita
	Slide 35: Tipovi parametara
	Slide 36: Kreiranje ulaznih parametara
	Slide 37: Kreiranje ulaznih parametara
	Slide 38: Kreiranje izlaznog parametra
	Slide 39: Kreiranje izlaznog parametra
	Slide 40: Parametarska INSERT komanda
	Slide 41: Parametarska INSERT komanda
	Slide 42: Parametarska UPDATE komanda
	Slide 43: Parametarska DELETE komanda
	Slide 44: Pitanje 1
	Slide 45: Pitanje 2
	Slide 46: Pitanje 3
	Slide 47: Pitanje 4
	Slide 48: Pitanje 5
	Slide 49: Pitanje 6
	Slide 50: Pitanje 7
	Slide 51: Pitanje 8
	Slide 52: Pitanje 9
	Slide 53: Pitanje 10

