Operatori za pristup clanu

Null-conditional operator?.

Koristi se za testiranje na null vrednost pre pristupa ¢lanu objekta

private void buttonl Click(object sender, EventArgs e)

{

Random rnd = new Random();
int a = rnd.Next(2); // © ili 1
string s = null;

if (a == 1)
{

s = "Test";
}

int? duzina = s?.Length;

if (duzina != null)

{
labell.Text = "String duzine: " + duzina;
}
else
{
labell.Text = "NULL string";
}

Null coalescing operator ??

Vraca levi operand ako je razli¢it od null u protivnom vraca
desni operand

private void button2 Click(object sender, EventArgs e)

{

Random rnd = new Random();
int a = rnd.Next(2); // © ili 1

string s = null;

if (a == 1)
{

s = "Test";
}

labell.Text = s ?? "Null string";

Struktura DateTime

Konstruktori DateTime strukture

[SerializableAttribute]
public struct DateTime : IComparable, IFormattable,
|Convertible, ISerializable, IComparable<DateTime>, I[Equatable<DateTime>

public DateTime(public DateTime(
int year, int year,
int month, int month,
int day) int day,
int hour,

int minute,
int second

)5

Korisnicki interfejs aplikacije

o5l Form1 — e

Date Time

private void Stampaj(string s)

{
}

richTextBoxl.AppendText(s + "\n");

Format datuma

private void buttonl Click(object sender, EventArgs e)

{ 15.7.2005. 11:20:00
DateTime dt = new DateTime(2005, 7, 15, 11, 20, 0); 15.07.2005
Stampaj(dt.ToString());
string s = dt.ToString("dd.MM.yyyy");

Stampaj(s);

}

private void button2 Click(object sender, EventArgs e)

{ sreda, 03. decembar 2025.
DateTime dt = DateTime.Now; 3.12.2025.
Stampaij(dt.ToLongDateString()); gr?gaz’:;é decembar 2025.
Stampaj(dt.ToShortDateString()); T
Stampaj(dt.ToString("D"));

Stampaj(dt.ToString("d"));

}

private void buttonl Click(object sender, EventArgs e)

{ 3.12.2025. 00:00:00
DateTime dt = DateTime.Today; 3.12.2025.
Stampaj(dt.ToString());

Stampaj(dt.ToString("d"));

}

Format vremena

private void button4 Click(object sender, EventArgs e)

{
DateTime dtl = DateTime.Now;

string s1 = dtl.ToString("hh:mm:ss");
//string s1 = dtl.ToString("HH:mm:ss");
Stampaj(sl);

}

private void button5 Click(object sender, RoutedEventArgs e)
{
DateTime dt = DateTime.Now;
Stampaj(dt.ToLongTimeString());
Stampaj(dt.ToShortTimeString());
Stampaj(dt.ToString("T"));
Stampaj(dt.ToString("t"));

}

private void button6 Click(object sender, EventArgs e)

{

DateTime dtl = DateTime.Now;
string s = dtl.Hour.ToString() + " : " + dtl.Minute.ToString();
Stampaj(s);

05:29:29

17:30:06
17:30
17:30:06
17:30

17 : 30

Sortiranje datumskih vrednosti

private void Buttonl Click(object sender, RoutedEventArgs e)

{

DateTime[] nizDatuma = {

new DateTime(2018,4,21),
new DateTime(2018,5,11),
new DateTime(2018,10,21),
new DateTime(2017,2,19),
¥

Array.Sort(nizDatuma);

foreach (DateTime dt in nizDatuma)

19.02.2017.

{ 21.04.2018.
Stampaj(dt.ToString("d")); 11.05.2018.

} 21.10.2018.

TimeSpan struktura

Koristi se da predstavi vremenski interval.

[SerializableAttribute][ComVisibleAttribute(true)]public struct TimeSpan :
IComparable, IComparable<TimeSpan>, IEquatable<TimeSpan>, IFormattable

public TimeSpan(public TimeSpan(
int hours, int days,
int minutes, int hours,
int seconds) int minutes,
int seconds)

Upotreba TimeSpan strukture

private void button7_Click(object sender, EventArgs e)

{

DateTime polazak = new DateTime(2025, 11, 25, 18, 30, 0);
DateTime dolazak = new DateTime(2026, 2, 25, 19, 47, 0);
TimeSpan putovanje = dolazak - polazak;

Stampaj(putovanje.ToString());
Stampaj(putovanje.Days.ToString());
Stampaj(putovanje.Hours.ToString());
Stampaj(putovanje.Minutes.ToString());

92.01:17:00
92

1

17

11

TimeSpan struktura-1

private void button8_Click(object sender, EventArgs e)

{

DateTime dtl = DateTime.Today;
Stampaj(dtl.ToString());
TimeSpan ts = new TimeSpan(23, 0, 0, 0);

DateTime dt2
DateTime dt3

dtl + ts;
dtl - ts;

Stampaj(dt2.ToString("d"));
Stampaj(dt3.ToString("d"));

3.12.2025. 00:00:00
26.12.2025.
10.11.2025.

12

Obrada izuzetaka

Pojam izuzetka

* |zuzetak je objekat koji sadrzi informacije o gresci koja nastaje tokom
izvrSavanja koda

* |zuzetak je objekat izveden iz klase Exception ili klase koja je izvedena
iz klase Exception

* lzuzetak se izbacuje od strane CLR-a ili eksplicitno od strane
programera (throw)

* |[zuzeci se obraduju koris¢enjem kljucnih reci try, catch i finally

14

Obrada izuzetaka

* Blok try zahteva postojanje catch bloka i/ili finally bloka
e Kod unutar try bloka moze da izbacuje razlicite tipove izuzetaka

* Naredbe unutar catch bloka se izvrSavaju ukoliko je izuzetak izbacen
unutar try bloka

* Moze se definisati vise catch blokova od kojih svaki obraduje
specijalizovanu klasu izuzetaka.

* Blok finally omogucava da se oslobode resursi i da se specificira kod
koji Ce se uvek izvrsiti nezavisno od toga da li je doslo do izuzetka ili ne

* Blok finally je opcioni blok

15

try-catch blok

try
{

}

// deo koda u kome moze doci do izuzetka

catch (Exception ex)

{
}

// obrada izuzetka

16

Koris¢enje vise catch blokova

* Ukoliko postoji vise catch blokova tada treba prvo hendlovati izuzetke koji su vise
specijalizovaniji, a zatim opstije
* Npr. DivideByZeroException klasa je izvedena iz klase ArithmeticException.

try
{
// kod u kome dolazi do izuzetka
}
catch (DivideByZeroException)
{
// kod se izvrsava ukoliko dodje do pokusaja deljenja sa nulom
}
catch (ArithmeticException)
{
// neki drugi aritmeticki izuzetak npr. OverflowException
}

Upotreba dva catch bloka

private void buttonl Click(object sender, EventArgs e)

{

string s = null;

try
{
if (!string.IsNullOrWhiteSpace(textBox1l.Text))
{
// string nije prazan
s = textBox1l.Text.Trim();
}
int a = int.Parse(s);
labelPoruka.Text = a.ToString();
}
catch (ArgumentNullException ex)
{
labelPoruka.Text = "Uhvacen prvi izuzetak: " + ex.Message;
}
catch (Exception ex)
{
labelPoruka.Text = "Uhvacen drugi izuzetak: " + ex.Message;
}

textBox1l.Clear();
textBox1.Focus();

18

Analiza koda

* Ako je TextBox prazan, s ostaje null, int.Parse(null) baca
ArgumentNullException, hvata ga prvi catch blok i ispisuje se poruka
,2Uhvacen prvi izuzetak”

» Kada se unese tekst koji nije broj (npr. ,,abc”) izbacuje se
FormatException, hvata ga drugi, opsti catch(Exception) blok i
prikazuje se poruka ,Uhvacen drugi izuzetak...”

* Ako je sve u redu na kontroli Label se ispisuje uneta vrednost

Upotreba dva catch bloka

g5 Formb — O X o5 Formb — O

|UInesi braj: |UInesi braj:

Prikazi Prikazi

Uhvacen prvi izuzetak: Value cannot be null. Uhvacen drugi izuzetak: Input string was not in @ comect format.
Parameter name: String

20

Primer bez upotrebe izuzetaka

private void buttonl Click(object sender, EventArgs e)

{
double a = double.Parse(textBoxl.Text);
double b = double.Parse(textBox2.Text);
double zbir = a + b;
MessageBox.Show("Zbir je:

+ zbir, "Rezultat");

21

Aplikacija prekida sa radom zbog izuzetka

85 Obrada izuzetaka

Prvi broj: | 3

Drugi braj; |,.;

Saberi

Exception Unhandled

System.FormatException: 'Input string was not in a correct format.”

View Details | Copy Details

I Exception Settings

22

Kod sa obradom izuzetaka

{

private void buttonl Click(object sender, EventArgs e)

try

{
double a = double.Parse(textBoxl.Text);
double b = double.Parse(textBox2.Text);
double zbir = a + b;
MessageBox.Show("Zbir je: " + zbir, "Rezultat");

}

catch (Exception xcp)

{
MessageBox.Show(xcp.Message);

}

textBox1.Clear();
textBox2.Clear();
textBox1.Focus();

23

Kolekcije

Pojam kolekcije

* Kolekcije se upotrebljavaju za upravljanje grupama objekata i imaju
vise funkcionalnosti nego nizovi

* VVeliCina niza se mora unapred definisati dok to nije slucaj sa
kolekcijama

* Klase kolekcija nalaze se u prostoru imena System.Collections
 Klase kolekcija su definisane na bazi jasno definisanih interfejsa
* Negenericke kolekcije rade sa tipom podataka object

25

Primeri negenerickih kolekcija

e Klase:
* Arraylist
* Queue
e Stack
* Hashtable

* Neophodno kastovanje clanova kolekcije u njihov stvaran tip
* Ove kolekcije mogu miksovati razliCite tipove podataka
* Nisu type-safe

26

Kolekcija ArrayList

* Elementima liste pristupa se preko indeksa kao i kod niza

e Za razliku od niza nije neophodno unapred poznavati broj elemenata

* Metoda Add(object) dodaje objekat na kraj liste

 Metoda Clear() briSe sve elemente iz liste

* Metoda Inse(t.(.pozicija, vrednost) ubacuje objekat vrednost na
pozicuju pozicija

 Metoda RemoveAt(index) brise element sa indeksom index iz liste

public class ArrayList : IList, ICollection, IEnumerable, ICloneable

27

Kolekcija ArrayList

 Metoda Remove(object) uklanja prvo pojavljivanje specificnog
objekta iz kolekcije

 Svojstvo Count daje broj clanova kolekcije

* Metoda Contains(object) odreduje da li se odredeni element nalazi u
kolekciji

* Metoda Sort() sortira elemente kolekcije
* Metoda Reverse() prikazuje emente kolekcijeu inverznom redosledu
* Metoda ToArray() kopira elemente liste u jednodimenzionalan niz

28

Genericke liste

Genericke liste (List<T>)

* Genericke liste se nalaze u prostoru imena System.Collections.Generic
* Omogucavaju skladistenje elemenata istog tipa

* Ne koriste tip object, pa nije potrebno kastovanje

* Type-safe su i greske tipa se detektuju u vreme kompaijliranja

* Automatski povecavaju kapacitet po potrebi

* Podrzavaju indeksni pristup i jednostavnu iteraciju

List<int> brojevi = new List<int>();

Metode i svojstva klase List<T>

Add(vrednost) — dodaje element na kraj liste

Insert(indeks, vrednost) — ubacuje element na zadati indeks
Remove(vrednost) — brise prvi element sa datom vrednoscu
RemoveAt(indeks) — brise element sa datog indeksa

Clear() — uklanja sve elemente iz liste

e Contains(vrednost) — proverava da li element postoji

* IndexOf(vrednost) — vraca indeks prvog pojavljivanja

e Sort() — sortira elemente liste

* Reverse() — obrée redosled elemenata

e ToArray() — vraca elemente kao niz

* Count — svojstvo koje daje broj elemenata u listi

Genericke liste

List<T> using System.Collections.Generic;

private void buttonl Click(object sender, EventArgs e)

{

List<int> celobrojnalLista = new List<int>();
celobrojnalLista.Add(1);
celobrojnalLista.Add(2);
celobrojnalLista.Add(55);

for (int i = @; i < celobrojnalLista.Count; i++)

{
}

richTextBox1l.AppendText(celobrojnaLista[i] + "\n");

richTextBox1l.AppendText("Novi nacin stampanja\n");

foreach (int i in celobrojnalLista)

{
}

richTextBox1l.AppendText(i + "\n");

32

Klasa Trkac

{

public
public
public
public

public
{

}

return Ime +

public class Trkac

string Ime { get; set; }

string Prezime { get; set; }
string Drzava { get; set; }
int BrojPobeda { get; set; }

override string ToString()

+ Prezime;

33

GUI aplikacije

o= Form1

Ime Ubaci
Prezime LInesi poziciju
|Ibaci na poziciju Chrisi
Drzava
Pronadii
Broj pobeda
Pera Peric
Mika Mikic
Laza Lazic

34

Stampanije liste

private List<Trkac> lista= new List<Trkac>();

private void StampajlListu()
{
richTextBoxl.Clear();
foreach (Trkac t in lista)
{
richTextBox1l.AppendText(t.ToString() + "\n");
}
}

35

Load dogadaj forme

private void Forml Load(object

{

Trkac t1 = new Trkac { Ime = "Pera", Prezime

lista.Add(t1);

Trkac t2 = new Trkac { Ime = "Mika", Prezime

lista.Add(t2);

Trkac t3 = new Trkac { Ime = "Laza", Prezime

lista.Add(t3);

StampajListu();

sender, EventArgs

e)

"Peric", BrojPobeda

"Mikic", BrojPobeda

"Lazic", BrojPobeda

12, Drzava = "Srbija" };
190, Drzava = "Srbija" };
8, Drzava = "Srbija" };

36

Resetovanje korisnickog interfejsa

private void Resetuj()

{
textBoxIme.Clear();
textBoxPrezime.Clear();
textBoxDrzava.Clear();
textBoxBrojPobeda.Clear();

Metoda za validaciju

{

public bool Validacija()

if (textBoxIme.Text.Trim().Length < 2)

{
MessageBox.Show("Ime mora imati najmanje 2 karaktera");
textBoxIme.Focus();
return false;

}

if (textBoxPrezime.Text.Trim().Length < 2)

{
MessageBox.Show("Prezime mora imati najmanje 2 karaktera");
textBoxPrezime.Focus();
return false;

}

if (textBoxDrzava.Text.Trim().Length < 2)

{
MessageBox.Show("Drzava mora imati najmanje 2 karaktera");
textBoxDrzava.Focus();
return false;

}

if (!int.TryParse(textBoxBrojPobeda.Text.Trim(), out int _))
{
MessageBox.Show("Broj pobeda mora biti ceo broj");
textBoxBrojPobeda.Clear();
textBoxBrojPobeda.Focus();
return false;

}

return true;

38

String metoda

public string VelikoPrvoSlovo(string rec)

{

rec = rec.Trim().ToLower();

if (rec.Length == 0)
return string.Empty;

if (rec.Length == 1)
return rec.ToUpper();

return rec.Substring(@, 1).ToUpper() + rec.Substring(l);

Metoda KreirajTrkacal()

public Trkac KreirajTrkaca()

{

if (Validacija())

{
string ime = VelikoPrvoSlovo(textBoxIme.Text);
string prezime = VelikoPrvoSlovo(textBoxPrezime.Text);
string drzava = VelikoPrvoSlovo(textBoxDrzava.Text);
int brojPobeda = int.Parse(textBoxBrojPobeda.Text.Trim());
Trkac t = new Trkac
{

Ime = ime, Prezime = prezime, Drzava = drzava, BrojPobeda = brojPobeda

}s
return t;

}

else

{
return null;

}

Ubacivanje elementa u listu

private void buttonl Click(object sender, EventArgs e)

{
Trkac t = KreirajTrkaca();
if (t != null)

{
lista.Add(t);
StampajlListu();
Resetuj();

}

Definisanje jednakosti dva objekta

class Trkac : IEquatable<Trkac»>

{
public bool Equals(Trkac other)
{ if (other is null)
{
return false;
}
if (Ime.ToLower() == other.Ime.TolLower()
&&
Prezime.ToLower() == other.Prezime.ToLower()
)
{
return true;
}
return false;
}

}

Ubacivanje u listu samo razliCitih objekata

private void buttonl Click(object sender, EventArgs e)

{

Trkac t = KreirajTrkaca();
if (t !'= null)

{
if (lista.Contains(t))
{
MessageBox.Show("Trkac se vec nalazi u listi", "Poruka");
}
else
{
lista.Add(t);
StampajListu();
}
Resetuj();
}

43

Ubacivanje elementa na poziciju

private void button2_Click(object sender, EventArgs e)

{

Trkac t = KreirajTrkaca();
if (t !'= null)
{

int pozicija = int.Parse(textBoxPozicija.Text);

if (pozicija >= 0 && pozicija <= lista.Count)
{
lista.Insert(pozicija, t);
StampajListu();
}

else

{
}

MessageBox.Show("Prekoracili ste poziciju", "Poruka");

Resetuj(Q);
textBoxPozicija.Clear();

Uklanjanje elementa iz liste

private void button3_Click(object sender, EventArgs e)

{

int pozicija = int.Parse(textBoxPozicija.Text);

if (pozicija >= 0 && pozicija < lista.Count)
{

lista.RemoveAt(pozicija);

StampajListu();
}
else
{
MessageBox.Show("Ne postoji ¢lan liste", "Poruka");
}

45

Pristup elementima genericke liste

private void buttond_Click(object sender, EventArgs e)
{
int pozicija = int.Parse(textBoxPozicija.Text);
if (pozicija >= 0 && pozicija < listaTrkaca.Count)
{
Trkac t = listaTrkacal[pozicijal;
textBoxIme.Text = t.Ime;
textBoxPrezime.Text = t.Prezime;
textBoxDrzava.Text = t.Drzava;
textBoxBrojPobeda.Text = t.BrojPobeda.ToString();
}
else
{
MessageBox.Show("Prekorac¢ili ste poslednju poziciju", "Poruka");
}
}

Pitanje 1

Ukoliko zelimo da isCitamo datum kada se desio klik na dugme bez isCitavanja
informacija o vremenu koristimo sledece svojstvo strukture DateTime:

a. Now
b. Today
c. Date

Odgovor: b

Pitanje 2

Kod koji moze da dovede do greske pri izvrSavanju stavlja se unutar bloka:

a. try
b. catch
c. finally

Odgovor: a

Pitanje 3

Generisani izuzetak od strane CLR komponente prosleduje se bloku:
a. try

b. catch

c. finally

Odgovor: b

Pitanje 4

Svaki izuzetak moze se dodeliti referenci tipa Exception:

a. Da
b. Ne

Odgovor: a

Pitanje 5

Genericka celobrojna lista pod nazivom intLista se instancira na sledeci nacin:

a. int<List> intLista = new int<List>();
b. List<int> intLista = new List<int>();
c. List[int] intLista = new List[int];

Odgovor: b

Pitanje 6

Da li je unutar genericke liste, koja nije tipa object, dozvoljeno Cuvanje
podataka razliCitog tipa:

a. Da
b. Ne

Odgovor: b

Pitanje /

Drugom clanu genericke liste tipa string pod nazivom stringLista pristupa se
koriscenjem sledece linije koda:

a. string a= stringLista(1);
b. string a= stringlista[1];
c. string a= stringLista.IndexOf(1);

Odgovor: b

	Slide 1: Operatori za pristup članu
	Slide 2: Null-conditional operator?.
	Slide 3: Null coalescing operator ??
	Slide 4: Struktura DateTime
	Slide 5: Konstruktori DateTime strukture
	Slide 6: Korisnički interfejs aplikacije
	Slide 7: Format datuma
	Slide 8: Format vremena
	Slide 9: Sortiranje datumskih vrednosti
	Slide 10: TimeSpan struktura
	Slide 11: Upotreba TimeSpan strukture
	Slide 12: TimeSpan struktura-1
	Slide 13: Obrada izuzetaka
	Slide 14: Pojam izuzetka
	Slide 15: Obrada izuzetaka
	Slide 16: try-catch blok
	Slide 17: Korišćenje više catch blokova
	Slide 18: Upotreba dva catch bloka
	Slide 19: Analiza koda
	Slide 20: Upotreba dva catch bloka
	Slide 21: Primer bez upotrebe izuzetaka
	Slide 22: Aplikacija prekida sa radom zbog izuzetka
	Slide 23: Kod sa obradom izuzetaka
	Slide 24: Kolekcije
	Slide 25: Pojam kolekcije
	Slide 26: Primeri negeneričkih kolekcija
	Slide 27: Kolekcija ArrayList
	Slide 28: Kolekcija ArrayList
	Slide 29: Generičke liste
	Slide 30: Generičke liste (List<T>)
	Slide 31: Metode i svojstva klase List<T>
	Slide 32: Generičke liste
	Slide 33: Klasa Trkac
	Slide 34: GUI aplikacije
	Slide 35: Štampanje liste
	Slide 36: Load događaj forme
	Slide 37: Resetovanje korisničkog interfejsa
	Slide 38: Metoda za validaciju
	Slide 39: String metoda
	Slide 40: Metoda KreirajTrkaca()
	Slide 41: Ubacivanje elementa u listu
	Slide 42: Definisanje jednakosti dva objekta
	Slide 43: Ubacivanje u listu samo različitih objekata
	Slide 44: Ubacivanje elementa na poziciju
	Slide 45: Uklanjanje elementa iz liste
	Slide 46: Pristup elementima generičke liste
	Slide 47: Pitanje 1
	Slide 48: Pitanje 2
	Slide 49: Pitanje 3
	Slide 50: Pitanje 4
	Slide 51: Pitanje 5
	Slide 52: Pitanje 6
	Slide 53: Pitanje 7

