
Operatori za pristup članu

Null-conditional operator?.

2

Koristi se za testiranje na null vrednost pre pristupa članu objekta

private void button1_Click(object sender, EventArgs e)
{
 Random rnd = new Random();
 int a = rnd.Next(2); // 0 ili 1
 string s = null;
 if (a == 1)
 {
 s = "Test";
 }

 int? duzina = s?.Length;

 if (duzina != null)
 {
 label1.Text = "String duzine: " + duzina;
 }
 else
 {
 label1.Text = "NULL string";
 }
}

Null coalescing operator ??

3

Vraća levi operand ako je različit od null u protivnom vraća
desni operand

private void button2_Click(object sender, EventArgs e)
{
 Random rnd = new Random();
 int a = rnd.Next(2); // 0 ili 1

 string s = null;

 if (a == 1)
 {
 s = "Test";
 }

 label1.Text = s ?? "Null string";
}

Struktura DateTime

Konstruktori DateTime strukture

5

public DateTime(
int year,
int month,
int day,
int hour,
int minute,
int second

);

[SerializableAttribute]

public struct DateTime : IComparable, IFormattable,

IConvertible, ISerializable, IComparable<DateTime>, IEquatable<DateTime>

public DateTime(

int year,

int month,

int day)

Korisnički interfejs aplikacije

6

private void Stampaj(string s)
{
 richTextBox1.AppendText(s + "\n");
}

Format datuma

7

private void button1_Click(object sender, EventArgs e)
{

DateTime dt = new DateTime(2005, 7, 15, 11, 20, 0);
Stampaj(dt.ToString());
string s = dt.ToString("dd.MM.yyyy");
Stampaj(s);

}

private void button1_Click(object sender, EventArgs e)
{

DateTime dt = DateTime.Today;
Stampaj(dt.ToString());
Stampaj(dt.ToString("d"));

}

private void button2_Click(object sender, EventArgs e)
{
 DateTime dt = DateTime.Now;
 Stampaj(dt.ToLongDateString());
 Stampaj(dt.ToShortDateString());
 Stampaj(dt.ToString("D"));
 Stampaj(dt.ToString("d"));
}

15.7.2005. 11:20:00

15.07.2005

sreda, 03. decembar 2025.

3.12.2025.

sreda, 03. decembar 2025.

3.12.2025

3.12.2025. 00:00:00
3.12.2025.

Format vremena

8

private void button6_Click(object sender, EventArgs e)
{

DateTime dt1 = DateTime.Now;
string s = dt1.Hour.ToString() + " : " + dt1.Minute.ToString();
Stampaj(s);

}

private void button4_Click(object sender, EventArgs e)
{

DateTime dt1 = DateTime.Now;
string s1 = dt1.ToString("hh:mm:ss");

 //string s1 = dt1.ToString("HH:mm:ss");
Stampaj(s1);

}

private void button5_Click(object sender, RoutedEventArgs e)
{
 DateTime dt = DateTime.Now;
 Stampaj(dt.ToLongTimeString());
 Stampaj(dt.ToShortTimeString());
 Stampaj(dt.ToString("T"));
 Stampaj(dt.ToString("t"));
}

05:29:29

17:30:06
17:30
17:30:06
17:30

17 : 30

Sortiranje datumskih vrednosti

9

private void Button1_Click(object sender, RoutedEventArgs e)
{
 DateTime[] nizDatuma = {

 new DateTime(2018,4,21),
 new DateTime(2018,5,11),
 new DateTime(2018,10,21),
 new DateTime(2017,2,19),
 };
 Array.Sort(nizDatuma);

 foreach (DateTime dt in nizDatuma)
 {
 Stampaj(dt.ToString("d"));
 }
}

19.02.2017.
21.04.2018.
11.05.2018.
21.10.2018.

TimeSpan struktura

[SerializableAttribute][ComVisibleAttribute(true)]public struct TimeSpan :
IComparable, IComparable<TimeSpan>, IEquatable<TimeSpan>, IFormattable

public TimeSpan(
 int hours,
 int minutes,
 int seconds)

Koristi se da predstavi vremenski interval.

10

public TimeSpan(
int days,
int hours,
int minutes,
int seconds)

Upotreba TimeSpan strukture

private void button7_Click(object sender, EventArgs e)
{

DateTime polazak = new DateTime(2025, 11, 25, 18, 30, 0);
DateTime dolazak = new DateTime(2026, 2, 25, 19, 47, 0);
TimeSpan putovanje = dolazak - polazak;

Stampaj(putovanje.ToString());
Stampaj(putovanje.Days.ToString());
Stampaj(putovanje.Hours.ToString());
Stampaj(putovanje.Minutes.ToString());

}

92.01:17:00
92
1
17

11

TimeSpan struktura-1

private void button8_Click(object sender, EventArgs e)
{

DateTime dt1 = DateTime.Today;
Stampaj(dt1.ToString());
TimeSpan ts = new TimeSpan(23, 0, 0, 0);

DateTime dt2 = dt1 + ts;
DateTime dt3 = dt1 - ts;

Stampaj(dt2.ToString("d"));
Stampaj(dt3.ToString("d"));

}

3.12.2025. 00:00:00

26.12.2025.

10.11.2025.

12

Obrada izuzetaka

Pojam izuzetka

• Izuzetak je objekat koji sadrži informacije o grešci koja nastaje tokom
izvršavanja koda

• Izuzetak je objekat izveden iz klase Exception ili klase koja je izvedena
iz klase Exception

• Izuzetak se izbacuje od strane CLR-a ili eksplicitno od strane
programera (throw)

• Izuzeci se obrađuju korišćenjem ključnih reči try, catch i finally

14

Obrada izuzetaka

• Blok try zahteva postojanje catch bloka i/ili finally bloka

• Kod unutar try bloka može da izbacuje različite tipove izuzetaka

• Naredbe unutar catch bloka se izvršavaju ukoliko je izuzetak izbačen
unutar try bloka

• Može se definisati više catch blokova od kojih svaki obrađuje
specijalizovanu klasu izuzetaka.

• Blok finally omogućava da se oslobode resursi i da se specificira kod
koji će se uvek izvršiti nezavisno od toga da li je došlo do izuzetka ili ne

• Blok finally je opcioni blok

15

try-catch blok

try
{

// deo koda u kome moze doci do izuzetka
}

catch (Exception ex)
{

// obrada izuzetka
}

16

Korišćenje više catch blokova

• Ukoliko postoji više catch blokova tada treba prvo hendlovati izuzetke koji su više
specijalizovaniji, a zatim opštije

• Npr. DivideByZeroException klasa je izvedena iz klase ArithmeticException.

17

try
{

// kod u kome dolazi do izuzetka
}
catch (DivideByZeroException)
{

// kod se izvrsava ukoliko dodje do pokusaja deljenja sa nulom
}
catch (ArithmeticException)
{

// neki drugi aritmeticki izuzetak npr. OverflowException
}

Upotreba dva catch bloka
private void button1_Click(object sender, EventArgs e)
{
 string s = null;
 try
 {
 if (!string.IsNullOrWhiteSpace(textBox1.Text))
 {
 // string nije prazan
 s = textBox1.Text.Trim();
 }
 int a = int.Parse(s);
 labelPoruka.Text = a.ToString();
 }
 catch (ArgumentNullException ex)
 {
 labelPoruka.Text = "Uhvacen prvi izuzetak: " + ex.Message;

 }
 catch (Exception ex)
 {
 labelPoruka.Text = "Uhvacen drugi izuzetak: " + ex.Message;
 }
 textBox1.Clear();
 textBox1.Focus();
} 18

Analiza koda

• Ako je TextBox prazan, s ostaje null, int.Parse(null) baca
ArgumentNullException, hvata ga prvi catch blok i ispisuje se poruka
„Uhvacen prvi izuzetak”

• Kada se unese tekst koji nije broj (npr. „abc“) izbacuje se
FormatException, hvata ga drugi, opšti catch(Exception) blok i
prikazuje se poruka „Uhvacen drugi izuzetak…“

• Ako je sve u redu na kontroli Label se ispisuje uneta vrednost

19

Upotreba dva catch bloka

20

21

Primer bez upotrebe izuzetaka

private void button1_Click(object sender, EventArgs e)
{

double a = double.Parse(textBox1.Text);
double b = double.Parse(textBox2.Text);
double zbir = a + b;
MessageBox.Show("Zbir je: " + zbir, "Rezultat");

}

22

Aplikacija prekida sa radom zbog izuzetka

23

Kod sa obradom izuzetaka
private void button1_Click(object sender, EventArgs e)
{

try
{

double a = double.Parse(textBox1.Text);
double b = double.Parse(textBox2.Text);
double zbir = a + b;
MessageBox.Show("Zbir je: " + zbir, "Rezultat");

}
catch (Exception xcp)
{

MessageBox.Show(xcp.Message);
}
textBox1.Clear();
textBox2.Clear();
textBox1.Focus();

}

Kolekcije

Pojam kolekcije

• Kolekcije se upotrebljavaju za upravljanje grupama objekata i imaju
više funkcionalnosti nego nizovi

• Veličina niza se mora unapred definisati dok to nije slučaj sa
kolekcijama

• Klase kolekcija nalaze se u prostoru imena System.Collections

• Klase kolekcija su definisane na bazi jasno definisanih interfejsa

• Negeneričke kolekcije rade sa tipom podataka object

25

Primeri negeneričkih kolekcija

• Klase:
• ArrayList

• Queue

• Stack

• Hashtable

• Neophodno kastovanje članova kolekcije u njihov stvaran tip

• Ove kolekcije mogu miksovati različite tipove podataka

• Nisu type-safe

26

Kolekcija ArrayList

• Elementima liste pristupa se preko indeksa kao i kod niza

• Za razliku od niza nije neophodno unapred poznavati broj elemenata

• Metoda Add(object) dodaje objekat na kraj liste

• Metoda Clear() briše sve elemente iz liste

• Metoda Insert(pozicija, vrednost) ubacuje objekat vrednost na
pozicuju pozicija

• Metoda RemoveAt(index) briše element sa indeksom index iz liste

27

public class ArrayList : IList, ICollection, IEnumerable, ICloneable

Kolekcija ArrayList

• Metoda Remove(object) uklanja prvo pojavljivanje specifičnog
objekta iz kolekcije

• Svojstvo Count daje broj članova kolekcije

• Metoda Contains(object) određuje da li se određeni element nalazi u
kolekciji

• Metoda Sort() sortira elemente kolekcije

• Metoda Reverse() prikazuje emente kolekcijeu inverznom redosledu

• Metoda ToArray() kopira elemente liste u jednodimenzionalan niz

28

Generičke liste

Generičke liste (List<T>)

• Generičke liste se nalaze u prostoru imena System.Collections.Generic

• Omogućavaju skladištenje elemenata istog tipa

• Ne koriste tip object, pa nije potrebno kastovanje

• Type-safe su i greške tipa se detektuju u vreme kompajliranja

• Automatski povećavaju kapacitet po potrebi

• Podržavaju indeksni pristup i jednostavnu iteraciju

30

List<int> brojevi = new List<int>();

Metode i svojstva klase List<T>

• Add(vrednost) – dodaje element na kraj liste

• Insert(indeks, vrednost) – ubacuje element na zadati indeks

• Remove(vrednost) – briše prvi element sa datom vrednošću

• RemoveAt(indeks) – briše element sa datog indeksa

• Clear() – uklanja sve elemente iz liste

• Contains(vrednost) – proverava da li element postoji

• IndexOf(vrednost) – vraća indeks prvog pojavljivanja

• Sort() – sortira elemente liste

• Reverse() – obrće redosled elemenata

• ToArray() – vraća elemente kao niz

• Count – svojstvo koje daje broj elemenata u listi

31

Generičke liste

32

List<T>

private void button1_Click(object sender, EventArgs e)
{

List<int> celobrojnaLista = new List<int>();
celobrojnaLista.Add(1);
celobrojnaLista.Add(2);
celobrojnaLista.Add(55);

for (int i = 0; i < celobrojnaLista.Count; i++)
{

richTextBox1.AppendText(celobrojnaLista[i] + "\n");
}

richTextBox1.AppendText("Novi nacin stampanja\n");

foreach (int i in celobrojnaLista)
{

richTextBox1.AppendText(i + "\n");
}

}

using System.Collections.Generic;

Klasa Trkac

33

public class Trkac
{

 public string Ime { get; set; }
 public string Prezime { get; set; }
 public string Drzava { get; set; }
 public int BrojPobeda { get; set; }

public override string ToString()
{

return Ime + " " + Prezime;
}

}

GUI aplikacije

34

Štampanje liste

35

private List<Trkac> lista= new List<Trkac>();

private void StampajListu()
{

richTextBox1.Clear();
foreach (Trkac t in lista)
{

richTextBox1.AppendText(t.ToString() + "\n");
}

}

Load događaj forme

36

private void Form1_Load(object sender, EventArgs e)
{

Trkac t1 = new Trkac { Ime = "Pera", Prezime = "Peric", BrojPobeda = 12, Drzava = "Srbija" };
lista.Add(t1);

Trkac t2 = new Trkac { Ime = "Mika", Prezime = "Mikic", BrojPobeda = 10, Drzava = "Srbija" };
lista.Add(t2);

Trkac t3 = new Trkac { Ime = "Laza", Prezime = "Lazic", BrojPobeda = 8, Drzava = "Srbija" };

lista.Add(t3);

StampajListu();
}

Resetovanje korisničkog interfejsa

37

private void Resetuj()
{

textBoxIme.Clear();
textBoxPrezime.Clear();
textBoxDrzava.Clear();
textBoxBrojPobeda.Clear();

}

Metoda za validaciju

38

public bool Validacija()
{
 if (textBoxIme.Text.Trim().Length < 2)

{
MessageBox.Show("Ime mora imati najmanje 2 karaktera");
textBoxIme.Focus();
return false;

}
 if (textBoxPrezime.Text.Trim().Length < 2)

{
MessageBox.Show("Prezime mora imati najmanje 2 karaktera");
textBoxPrezime.Focus();
return false;

}
 if (textBoxDrzava.Text.Trim().Length < 2)

{
MessageBox.Show("Drzava mora imati najmanje 2 karaktera");
textBoxDrzava.Focus();
return false;

}

if (!int.TryParse(textBoxBrojPobeda.Text.Trim(), out int _))
{

MessageBox.Show("Broj pobeda mora biti ceo broj");
textBoxBrojPobeda.Clear();
textBoxBrojPobeda.Focus();
return false;

}
return true;

}

String metoda

39

public string VelikoPrvoSlovo(string rec)
{

rec = rec.Trim().ToLower();

if (rec.Length == 0)
return string.Empty;

if (rec.Length == 1)
return rec.ToUpper();

return rec.Substring(0, 1).ToUpper() + rec.Substring(1);
}

Metoda KreirajTrkaca()

40

public Trkac KreirajTrkaca()
{
 if (Validacija())
 {
 string ime = VelikoPrvoSlovo(textBoxIme.Text);
 string prezime = VelikoPrvoSlovo(textBoxPrezime.Text);
 string drzava = VelikoPrvoSlovo(textBoxDrzava.Text);
 int brojPobeda = int.Parse(textBoxBrojPobeda.Text.Trim());

 Trkac t = new Trkac
 {
 Ime = ime, Prezime = prezime, Drzava = drzava, BrojPobeda = brojPobeda
 };
 return t;
 }
 else
 {
 return null;
 }
}

Ubacivanje elementa u listu

41

private void button1_Click(object sender, EventArgs e)
{

Trkac t = KreirajTrkaca();
if (t != null)
{

lista.Add(t);
StampajListu();
Resetuj();

}
}

Definisanje jednakosti dva objekta

42

class Trkac : IEquatable<Trkac>
{

....
public bool Equals(Trkac other)
{
 if (other is null)
 {
 return false;
 }

 if (Ime.ToLower() == other.Ime.ToLower()
 &&
 Prezime.ToLower() == other.Prezime.ToLower()
)
 {
 return true;
 }
 return false;
}
}

Ubacivanje u listu samo različitih objekata

43

private void button1_Click(object sender, EventArgs e)
{

Trkac t = KreirajTrkaca();
if (t != null)
{

if (lista.Contains(t))
{

MessageBox.Show("Trkac se vec nalazi u listi", "Poruka");
}
else
{

lista.Add(t);
StampajListu();

}
Resetuj();

}
}

Ubacivanje elementa na poziciju

44

private void button2_Click(object sender, EventArgs e)
{

Trkac t = KreirajTrkaca();
if (t != null)
{

int pozicija = int.Parse(textBoxPozicija.Text);

if (pozicija >= 0 && pozicija <= lista.Count)
{

lista.Insert(pozicija, t);
StampajListu();

}
else
{

MessageBox.Show("Prekoracili ste poziciju", "Poruka");
}

Resetuj();
textBoxPozicija.Clear();

}
}

Uklanjanje elementa iz liste

45

private void button3_Click(object sender, EventArgs e)
{

int pozicija = int.Parse(textBoxPozicija.Text);

if (pozicija >= 0 && pozicija < lista.Count)
{

lista.RemoveAt(pozicija);
StampajListu();

}
else
{

MessageBox.Show("Ne postoji član liste", "Poruka");
}

}

Pristup elementima generičke liste

46

private void button4_Click(object sender, EventArgs e)
{

int pozicija = int.Parse(textBoxPozicija.Text);

if (pozicija >= 0 && pozicija < listaTrkaca.Count)
{

Trkac t = listaTrkaca[pozicija];

textBoxIme.Text = t.Ime;
textBoxPrezime.Text = t.Prezime;
textBoxDrzava.Text = t.Drzava;
textBoxBrojPobeda.Text = t.BrojPobeda.ToString();

}
else
{

MessageBox.Show("Prekoračili ste poslednju poziciju", "Poruka");
}

}

Pitanje 1

Ukoliko želimo da iščitamo datum kada se desio klik na dugme bez iščitavanja
informacija o vremenu koristimo sledeće svojstvo strukture DateTime:

a. Now
b. Today
c. Date

Odgovor: b

47

Pitanje 2

48

Kod koji može da dovede do greške pri izvršavanju stavlja se unutar bloka:

a. try
b. catch
c. finally

Odgovor: a

Pitanje 3

49

Generisani izuzetak od strane CLR komponente prosleđuje se bloku:
a. try
b. catch
c. finally

Odgovor: b

Pitanje 4

50

Svaki izuzetak može se dodeliti referenci tipa Exception:

a. Da
b. Ne

Odgovor: a

Pitanje 5

Generička celobrojna lista pod nazivom intLista se instancira na sledeći način:

a. int<List> intLista = new int<List>();
b. List<int> intLista = new List<int>();
c. List[int] intLista = new List[int];

Odgovor: b

51

Pitanje 6
Da li je unutar generičke liste, koja nije tipa object, dozvoljeno čuvanje
podataka različitog tipa:

a. Da
b. Ne

Odgovor: b

52

Pitanje 7

Drugom članu generičke liste tipa string pod nazivom stringLista pristupa se
korišćenjem sledeće linije koda:

a. string a= stringLista(1);
b. string a= stringLista[1];
c. string a= stringLista.IndexOf(1);

Odgovor: b

53

	Slide 1: Operatori za pristup članu
	Slide 2: Null-conditional operator?.
	Slide 3: Null coalescing operator ??
	Slide 4: Struktura DateTime
	Slide 5: Konstruktori DateTime strukture
	Slide 6: Korisnički interfejs aplikacije
	Slide 7: Format datuma
	Slide 8: Format vremena
	Slide 9: Sortiranje datumskih vrednosti
	Slide 10: TimeSpan struktura
	Slide 11: Upotreba TimeSpan strukture
	Slide 12: TimeSpan struktura-1
	Slide 13: Obrada izuzetaka
	Slide 14: Pojam izuzetka
	Slide 15: Obrada izuzetaka
	Slide 16: try-catch blok
	Slide 17: Korišćenje više catch blokova
	Slide 18: Upotreba dva catch bloka
	Slide 19: Analiza koda
	Slide 20: Upotreba dva catch bloka
	Slide 21: Primer bez upotrebe izuzetaka
	Slide 22: Aplikacija prekida sa radom zbog izuzetka
	Slide 23: Kod sa obradom izuzetaka
	Slide 24: Kolekcije
	Slide 25: Pojam kolekcije
	Slide 26: Primeri negeneričkih kolekcija
	Slide 27: Kolekcija ArrayList
	Slide 28: Kolekcija ArrayList
	Slide 29: Generičke liste
	Slide 30: Generičke liste (List<T>)
	Slide 31: Metode i svojstva klase List<T>
	Slide 32: Generičke liste
	Slide 33: Klasa Trkac
	Slide 34: GUI aplikacije
	Slide 35: Štampanje liste
	Slide 36: Load događaj forme
	Slide 37: Resetovanje korisničkog interfejsa
	Slide 38: Metoda za validaciju
	Slide 39: String metoda
	Slide 40: Metoda KreirajTrkaca()
	Slide 41: Ubacivanje elementa u listu
	Slide 42: Definisanje jednakosti dva objekta
	Slide 43: Ubacivanje u listu samo različitih objekata
	Slide 44: Ubacivanje elementa na poziciju
	Slide 45: Uklanjanje elementa iz liste
	Slide 46: Pristup elementima generičke liste
	Slide 47: Pitanje 1
	Slide 48: Pitanje 2
	Slide 49: Pitanje 3
	Slide 50: Pitanje 4
	Slide 51: Pitanje 5
	Slide 52: Pitanje 6
	Slide 53: Pitanje 7

