
Reaktivne forme

1

Reaktivne forme

• ReactiveFormsModule se uvozi direktno u standalone komponentu

• Model forme se definiše u klasi komponente korišćenjem klasa
FormGroup i FormControl

• Forma se povezuje sa DOM-om putem direktiva (formGroup,
formControlName)

• Validacija se definiše u modelu forme (npr. Validators.required)

• Promene vrednosti i stanja forme se prate reaktivno (valueChanges,
statusChanges)

2

Importovanje modula ReactiveFormsModule

3

import { Component} from '@angular/core';
import { ReactiveFormsModule, FormGroup, FormControl } from '@angular/forms';

@Component({
selector: 'app-root',
imports: [ReactiveFormsModule],
templateUrl: './app.html',
styleUrl: './app.css'

})
export class App {
title = 'Reaktivne forme';

}

Klasa komponente

4

export class App {
title = 'Reaktivne forme';

form1 = new FormGroup({
ime: new FormControl(''),
prezime: new FormControl('')

});

onSubmit() {
console.log(this.form1.value);

}
}

Šablon glavne komponente

5

<div class="container">
<div class="jumbotron"><h5>Reaktivne forme</h5></div>

<div class="row">
<div class="col-6">
<form>
<div class="form-group">
<label for="ime">Ime</label>
<input id="ime" class="form-control">

</div>
<div class="form-group">
<label for="prezime">Prezime</label>
<input id="prezime" class="form-control">

</div>
<button class="btn btn-primary" type="submit">Pošalji</button>

</form>
</div>

</div>
</div>

Povezivanje šablona sa modelom

• FormGroup objekat se kreira u komponenti i definiše strukturu reaktivne
forme

• Direktiva formGroup povezuje HTML form, HTML <form> element sa
objektom FormGroup iz komponente

• HTML ne čuva stanje forme (vrednosti, validnost, touched/dirty)

• Vrednosti i stanja pojedinačnih polja čuvaju se u FormControl instancama

• HTML elementi emituju događaje (input, blur, submit), koje Angular mapira
na odgovarajuće kontrole

• Direktiva formControlName povezuje HTML kontrolu sa konkretnim
FormControl objektom iz FormGroup

6

Direktive formControlName i formGroup

• Direktiva formControlName uspostavlja dvosmernu vezu između HTML
kontrole i FormControl instance

• Promene u HTML inputu ažuriraju vrednost FormControl objekta

• Promene vrednosti u FormControl objektu automatski se reflektuju u
HTML-u

• Direktiva formGroup registruje <form> kao prikaz FormGroup objekta

• Direktiva formGroup definiše kojem FormGroup-u pripadaju
formControlName kontrole

• [formGroup] koristi property binding jer prima FormGroup objekat

• formControlName prima ključ (string) pod kojim je FormControl
registrovan u FormGroup objektu

7

Šablon komponente

8

<div class="col-6">
<form [formGroup]="form1" (ngSubmit)="onSubmit()">
<div class="form-group">
<label for="ime">Ime</label>
<input id="ime" class="form-control" formControlName="ime">

</div>
<div class="form-group">
<label for="prezime">Prezime</label>
<input id="prezime" class="form-control" formControlName="prezime">

</div>
<div class="form-group">
<button type="submit" class="btn btn-primary">Pošalji</button>

</div>
</form>

</div>

Rezultat slanja forme

• Klikom na dugme Pošalji aktivira se (ngSubmit) događaj

• Metoda onSubmit() dobija vrednosti forme iz form1.value

• Podaci se prikazuju u konzoli kao JavaScript objekat

9

Validacija reaktivne forme

• Validacija se definiše u modelu forme pomoću validatora
• Validators.required je validaciona funkcija koja proverava da li

FormControl ima vrednost
• Validators.minLength(n) / Validators.maxLength(n) – ograničenje dužine

unosa
• Validators.pattern() – validacija prema regularnom izrazu
• FormControl može imati više validatora, prosleđenih kao niz
• Svaki FormControl ima stanja: valid, invalid, touched, dirty
• FormGroup agregira validaciono stanje svih kontrola
• Forma je validna samo ako su sve kontrole validne (form1.valid)
• Validacija se izvršava automatski pri promeni vrednosti

10

Validacija reaktivne forme

11

import { Component } from '@angular/core';
import { FormControl, FormGroup, ReactiveFormsModule, Validators } from '@angular/forms';

@Component({
selector: 'app-forme1-component',
imports: [ReactiveFormsModule],
templateUrl: './forme1-component.html',
styleUrl: './forme1-component.css',

})
export class Forme1Component {
title = 'Reaktivne forme';

form1 = new FormGroup({
ime: new FormControl('', Validators.required),
prezime: new FormControl('', Validators.required)

});

onSubmit() {
console.log(this.form1.value);

}
}

Prikaz validacionih grešaka – polje ime

12

<div class="form-group">
<label for="ime">Ime</label>
<input id="ime" class="form-control" formControlName="ime">

@if (form1.get('ime')?.invalid && form1.get('ime')?.touched) {
<div class="alert alert-danger">
Unesi ime

</div>
}

</div>

Prikaz validacionih grešaka – polje prezime

13

<div class="form-group">
<label for="prezime">Prezime</label>
<input id="prezime" class="form-control" formControlName="prezime">

@if (form1.get('prezime')?.invalid && form1.get('prezime')?.touched) {
<div class="alert alert-danger">

Unesi prezime
</div>

}
</div>

Zabrana sabmitovanje ne validnih podataka

14

<div class="form-group">
 <button type="submit" [disabled]="form1.invalid">Pošalji</button>

</div>

Submit dugme je onemogućeno dok FormGroup ima nevalidne kontrole

Validacione greške

15

Getteri za pristup kontrolama forme

• Getter metode omogućavaju kraći i čitljiviji pristup kontrolama forme

• this.form1.controls.ime vraća konkretnu FormControl instancu

• Getter se koristi direktno u šablonu (ime.invalid, ime.touched)

• Time se izbegava ponavljanje izraza form1.get('ime') u HTML-u

• Getteri ne menjaju stanje forme, već samo olakšavaju čitanje

16

Getteri za pristup kontrolama forme

17

get ime() { return this.form1.controls.ime; }
// get ime() { return this.form1.get('ime'); }

get prezime() { return this.form1.controls.prezime; }
// get prezime() { return this.form1.get('prezime'); }

• controls.ime je direktan i tipizovan pristup sa autocomplete podrškom
• get('ime') koristi string ključ i nema pomoć okruženja (nema type-safety)
• get() je fleksibilniji i radi sa ugnježdenim kontrolama
• Izbor pristupa zavisi od složenosti forme

Validacija polja ime upotrebom getera

18

<div class="form-group">
<label for="ime">Ime</label>
<input id="ime" class="form-control" formControlName="ime">

@if (ime.invalid && ime.touched) {
<div class="alert alert-danger">Unesi ime</div>
}

</div>

Validacija polja prezime upotrebom getera

19

<div class="form-group">
<label for="prezime">Prezime</label>
<input id="prezime" class="form-control" formControlName="prezime">

@if (prezime.invalid && prezime.touched) {
<div class="alert alert-danger">
Unesi prezime

</div>
}

</div>

Pristup validacionim greškama (errors)

• errors je objekat koji sadrži validacione greške za FormControl

• Svaki ključ u errors objektu odgovara nazivu validatora

• ime.errors?.['required'] proverava da li je aktivna greška validatora
required

• Operator ?. sprečava grešku ako errors trenutno ne postoji

• Alternativno, može se koristiti metoda hasError('required’)

• hasError() vraća true ako je određena validaciona greška aktivna

• Ovo je ispravan i preporučen način provere pojedinačnih validacionih
grešaka

20

Definisanje više validatora za polje ime

21

form1 = new FormGroup({
ime: new FormControl('', [Validators.required, Validators.minLength(3)]),
prezime: new FormControl('', Validators.required)

});

@if (ime.invalid && ime.dirty) {
<div class="alert alert-danger">

@if (ime.errors?.['required']) {
<div>Unesite ime</div>
}
@if (ime.errors?.['minlength']) {
<div>Najmanje 3 karaktera</div>
}

</div>

Prikaz validacionih grešaka

22

FormBuilder

• FormBuilder je pomoćni API za konstrukciju FormGroup/FormControl instanci, umesto
direktnog new

• Metoda group() kreira instancu FormGroup

• Metoda control() kreira instancu FormControl

• FormBuilder se ubrizgava putem dependency injection-a u komponentu

• Najčešće se koristi umesto ručnog pozivanja new FormGroup() i new FormControl()

23

import { FormGroup, FormBuilder, Validators } from '@angular/forms';

FormBuilder

24

export class Forme3Component {
title = 'FormBuilder';
form1: FormGroup;

constructor(private fb: FormBuilder) {
this.form1 = this.fb.group({
ime: ['', [Validators.required, Validators.maxLength(10)]],
prezime: ['', Validators.required]

});
}

get ime() { return this.form1.controls['ime']; }
get prezime() { return this.form1.controls['prezime']; }

onSubmit() {
console.log(this.form1.value);

}
}

Šablon komponente

25

<div class="form-group">
<label for="ime">Ime</label>
<input id="ime" class="form-control" formControlName="ime">

@if (ime.invalid && ime.touched) {
<div class="alert alert-danger">

@if (ime.hasError('required')) { <div>Unesite ime</div> }
@if (ime.hasError('maxlength')) { <div>Najviše 10 karaktera</div> }

</div>
}

</div>
...
<div class="form-group">
<button type="submit" class="btn btn-primary"
[disabled]="form1.invalid">Pošalji</button>
</div>

id atribut nije obavezan za reaktivne forme, ali se koristi zbog povezivanja sa <label> i pristupačnosti.

Reaktivna forma primer – model klasa

26

export class Student {
 constructor(
 public ime: string,
 public prezime: string,
 public pol: string,
 public smer: string
) {}
}

Komponenta StudentComponent

27

export class StudentComponent {

title = 'Reaktivne forme vežba';

smerovi = ['Informatika', 'Marketing', 'Menadžment'];

student: Student = new Student('', '', 'muski', 'Informatika');

studentForm = new FormGroup({
ime: new FormControl('', Validators.required),
prezime: new FormControl('', Validators.required),
pol: new FormControl('muski', Validators.required),
smer: new FormControl('Informatika', Validators.required)

});
...
}

Geteri za pristup kontrolama

28

get ime() { return this.studentForm.controls.ime; }
get prezime() { return this.studentForm.controls.prezime; }
get pol() { return this.studentForm.controls.pol; }
get smer() { return this.studentForm.controls.smer; }

Metoda onSubmit()

29

onSubmit() {
if (this.studentForm.invalid) return;

const student = new Student(
this.ime.value!,
this.prezime.value!,
this.pol.value!,
this.smer.value!

);

console.log(student);
}

• ! je TypeScript non-null assertion operator
• Njime se govori kompajleru: ova vrednost ovde nije null.

Metode resetuj() i setDefault()

30

resetuj() {
this.student = new Student('', '', 'muski',

'Informatika');
this.studentForm.reset(this.student);

}
// setDefault {
// this.studentForm.patchValue({
// ime: 'Marko',
// prezime: 'Markovic',
// pol: 'muski',
// smer: 'Informatika'
// });
// }
setDefault() {
this.studentForm.setValue({
ime: 'Marko',
prezime: 'Markovic',
pol: 'muski',
smer: 'Informatika'

});
}

• reset() – vraća formu u početno stanje
(vrednosti + statusi)

• patchValue() – dozvoljava parcijalno
popunjavanje

• setValue() – zahteva vrednosti za sva polja
forme

Šablon komponente

31

<form [formGroup]="studentForm" (ngSubmit)="onSubmit()">

<div class="form-group">
<label for="ime">Ime:</label>
<input id="ime" type="text" class="form-control" formControlName="ime">
@if (ime.invalid && ime.touched) { <div>Unesite ime.</div> }

</div>

<div class="form-group">
<label for="prezime">Prezime:</label>
<input id="prezime" type="text" class="form-control" formControlName="prezime">
@if (prezime.invalid && prezime.touched) { <div>Unesite prezime.</div> }

</div>

....
</form>

32

<div class="form-group">
<label>Odaberi pol:</label>
<div class="form-check">
<input type="radio" id="radio1" value="muski" class="form-check-input" formControlName="pol">
<label for="radio1" class="form-check-label">Muški</label>

</div>
<div class="form-check">
<input type="radio" id="radio2" value="zenski" class="form-check-input" formControlName="pol">
<label for="radio2" class="form-check-label">Ženski</label>

</div>
</div>

<div class="form-group">
<label for="smer">Odaberi smer:</label>
<select id="smer" class="form-control" formControlName="smer">
@for (smer of smerovi; track smer) { <option [value]="smer">{{ smer }}</option> }

</select>
</div>

33

<div class="form-group">
<button class="btn btn-primary" [disabled]="studentForm.invalid">Pošalji</button>
<button type="button" class="btn btn-primary" (click)="setDefault()">Default</button>
<button type="button" class="btn btn-primary" (click)="resetuj()">Reset</button>

</div>

34

Pitanje 1

Povezivanje postojeće instance klase FormGroup sa HTML elementom <form>
u reaktivnim formama vrši se korišćenjem direktive:

a. formGroup
b. formControlName
c. bindForm

Odgovor: a

35

Pitanje 2

Sinhronizacija instance klase FormControl sa DOM elementom u reaktivnim
formama vrši se posredstvom direktive:

a. control
b. controlBind
c. formControlName

Odgovor: c

36

Pitanje 3

37

Kod reaktivnih formi :

a. Instance klase FormGroup i FormControl se kreiraju na osnovu šablona
komponente u kome se nalazi forma

b. Kreira se model forme u kome se instanciraju klase FormGroup i
FormControl pa se vrši sinhronizacija tog modela sa formom

c. Forma se kreira instanciranjem klase ReactiveForm

Odgovor: b

Pitanje 4

38

Kod reaktivnih formi Angular servis koji se koristi za kreiranje instanci FormGroup i
FormControl naziva se:

a. FormGenerator
b. CreateForm
c. FormBuilder

Odgovor: c

Pitanje 5

39

U reaktivnim formama gde se čuvaju vrednosti polja i validaciona stanja forme?

a. U HTML DOM elementima
b. U instancama FormGroup i FormControl
c. U šablonu komponente

Odgovor: b

Pitanje 6

40

U reaktivnim formama, šta predstavlja svojstvo errors objekta FormControl?

a. Objekat koji sadrži aktivne validacione greške za kontrolu
b. Niz poruka o greškama koje Angular automatski prikazuje
c. Boolean vrednost koja označava da li je kontrola validna

Odgovor: a

Pitanje 7

41

Koja od sledećih opcija predstavlja ispravnu sintaksu za povezivanje FormGroup
instance sa HTML <form> elementom u reaktivnim formama?

a. <form (formGroup)="form1">
b. <form formGroup="form1">
c. <form [formGroup]="form1">

Odgovor: c

	Slide 1: Reaktivne forme
	Slide 2: Reaktivne forme
	Slide 3: Importovanje modula ReactiveFormsModule
	Slide 4: Klasa komponente
	Slide 5: Šablon glavne komponente
	Slide 6: Povezivanje šablona sa modelom
	Slide 7: Direktive formControlName i formGroup
	Slide 8: Šablon komponente
	Slide 9: Rezultat slanja forme
	Slide 10: Validacija reaktivne forme
	Slide 11: Validacija reaktivne forme
	Slide 12: Prikaz validacionih grešaka – polje ime
	Slide 13: Prikaz validacionih grešaka – polje prezime
	Slide 14: Zabrana sabmitovanje ne validnih podataka
	Slide 15: Validacione greške
	Slide 16: Getteri za pristup kontrolama forme
	Slide 17: Getteri za pristup kontrolama forme
	Slide 18: Validacija polja ime upotrebom getera
	Slide 19: Validacija polja prezime upotrebom getera
	Slide 20: Pristup validacionim greškama (errors)
	Slide 21: Definisanje više validatora za polje ime
	Slide 22: Prikaz validacionih grešaka
	Slide 23: FormBuilder
	Slide 24: FormBuilder
	Slide 25: Šablon komponente
	Slide 26: Reaktivna forma primer – model klasa
	Slide 27: Komponenta StudentComponent
	Slide 28: Geteri za pristup kontrolama
	Slide 29: Metoda onSubmit()
	Slide 30: Metode resetuj() i setDefault()
	Slide 31: Šablon komponente
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Pitanje 1
	Slide 36: Pitanje 2
	Slide 37: Pitanje 3
	Slide 38: Pitanje 4
	Slide 39: Pitanje 5
	Slide 40: Pitanje 6
	Slide 41: Pitanje 7

