Reaktivne forme

Reaktivne forme

e ReactiveFormsModule se uvozi direktno u standalone komponentu

* Model forme se definise u klasi komponente koris¢enjem klasa
FormGroup i FormControl

* Forma se povezuje sa DOM-om putem direktiva (formGroup,
formControlName)

* Validacija se definiSe u modelu forme (npr. Validators.required)

* Promene vrednosti i stanja forme se prate reaktivno (valueChanges,
statusChanges)

Importovanje modula ReactiveFormsModule

import { Component} from '@angular/core’;
import { ReactiveFormsModule, FormGroup, FormControl } from '@angular/forms’;

@Component ({
selector: 'app-root',
imports: [ReactiveFormsModule],
templateUrl: './app.html',
styleUrl: './app.css'

})

export class App {
title = 'Reaktivne forme’;

}

Klasa komponente

export class App {
title = 'Reaktivne forme';

forml = new FormGroup({
ime: new FormControl(''),
prezime: new FormControl('")

});

onSubmit() {
console.log(this.forml.value);

}
}

Sablon glavne komponente

<div class="container">
<div class="jumbotron"><h5>Reaktivne forme</h5></div>

<div class="row">
<div class="col-6">
<form>
<div class="form-group">
<label for="ime">Ime</label>
<input id="ime" class="form-control">
</div>
<div class="form-group">
<label for="prezime">Prezime</label>
<input id="prezime" class="form-control">
</div>
<button class="btn btn-primary" type="submit">Posalji</button>
</form>
</div>
</div>
</div>

Povezivanje sablona sa modelom

* FormGroup objekat se kreira u komponenti i definise strukturu reaktivne
forme

* Direktiva formGroup povezuje HTML form, HTML <form> element sa
objektom FormGroup iz komponente

 HTML ne €uva stanje forme (vrednosti, validnost, touched/dirty)
* Vrednosti i stanja pojedinacnih polja cuvaju se u FormControl instancama

« HTML elementi emituju dogadaje (input, blur, submit), koje Angular mapira
na odgovarajuce kontrole

* Direktiva formControlName povezuje HTML kontrolu sa konkretnim
FormControl objektom iz FormGroup

Direktive formControlName i formGroup

* Direktiva formControlName uspostavlja dvosmernu vezu izmedu HTML
kontrole i FormControl instance

* Promene u HTML inputu azuriraju vrednost FormControl objekta

* Promene vrednosti u FormControl objektu automatski se reflektuju u
HTML-u

* Direktiva formGroup registruje <form> kao prikaz FormGroup objekta

* Direktiva formGroup definiSe kojem FormGroup-u pripadaju
formControlName kontrole

* [formGroup] koristi property binding jer prima FormGroup objekat

* formControlName prima kljuc (string) pod kojim je FormControl
registrovan u FormGroup objektu

Sablon komponente

<div class="col-6">
<form [formGroup]="forml" (ngSubmit)="onSubmit()">
<div class="form-group">
<label for="ime">Ime</label>
<input id="ime" class="form-control" formControlName="ime">
</div>
<div class="form-group">
<label for="prezime">Prezime</label>
<input id="prezime" class="form-control"” formControlName="prezime">
</div>
<div class="form-group">
<button type="submit" class="btn btn-primary">Posalji</button>
</div>
</form>
</div>

Rezultat slanja forme

* Klikom na dugme Posalji aktivira se (ngSubmit) dogadaj
* Metoda onSubmit() dobija vrednosti forme iz form1.value
* Podaci se prikazuju u konzoli kao JavaScript objekat

R AN x 4+

— O X
C @A O localhost4200 2 ’- - @
g2 0 Rweeome <» B O 2 <@ oo [%
Reaktivne forme
ooooo le Issues S B
| B @ top It levels idden
&3
Ime Angular is running in development mode. debug_node.m
{ }
Marko
Prezim L]

Validacija reaktivne forme

* Validacija se definise u modelu forme pomocu validatora

 Validators.required je validaciona funkcija koja proverava da li
FormControl ima vrednost

* Validators.minLength(n) / Validators.maxLength(n) — ogranicenje duzine
unosa

 Validators.pattern() — validacija prema regularnom izrazu
 FormControl moze imati vise validatora, prosledenih kao niz

* Svaki FormControl ima stanja: valid, invalid, touched, dirty

* FormGroup agregira validaciono stanje svih kontrola

* Forma je validna samo ako su sve kontrole validne (form1.valid)
* Validacija se izvrSava automatski pri promeni vrednosti

Validacija reaktivne forme

import { Component } from '@angular/core’;
import { FormControl, FormGroup, ReactiveFormsModule, Validators } from '@angular/forms’;

@Component ({
selector: "app-formel-component’,
imports: [ReactiveFormsModule],
templateUrl: './formel-component.html’,
styleUrl: './formel-component.css',

})

export class FormelComponent {

title = 'Reaktivne forme';

forml = new FormGroup({
ime: new FormControl('', Validators.required),
prezime: new FormControl('', Validators.required)

})s

onSubmit() {
console.log(this.forml.value);

}
}

11

Prikaz validacionih gresaka — polje ime

<div class="form-group">
<label for="ime">Ime</label>
<input id="ime" class="form-control” formControlName="ime">

@if (forml.get('ime')?.invalid && forml.get('ime')?.touched) {
<div class="alert alert-danger">
Unesi ime
</div>

¥

</div>

12

Prikaz validacionih gresaka — polje prezime

<div class="form-group">
<label for="prezime">Prezime</label>
<input id="prezime" class="form-control” formControlName="prezime">

@if (forml.get('prezime')?.invalid && forml.get('prezime')?.touched) {
<div class="alert alert-danger">
Unesi prezime
</div>

¥

</div>

13

/abrana sabmitovanje ne validnih podataka

<div class="form-group">
<button type="submit" [disabled]="forml.invalid">PoSalji</button>
</div>

Submit dugme je onemoguceno dok FormGroup ima nevalidne kontrole

Validacione greske

o 1Y 2025

T (A | O localhost:4200

Reaktivhe forme

“ CJ @_J O @Welcome ¢ +

v

Console Issues

|] (/) top * T

Default levels » No lssues 2 hidden E§3

= Filter
Ime

Angular is running in
development mode.

»

debug_node.mjs:18267

Unesi ime

Prezime

Unesi prezime

15

Getteri za pristup kontrolama forme

* Getter metode omogucavaju kraci i Citljiviji pristup kontrolama forme
* this.form1l.controls.ime vraca konkretnu FormControl instancu

* Getter se koristi direktno u Sablonu (ime.invalid, ime.touched)

* Time se izbegava ponavljanje izraza form1.get('ime') u HTML-u

* Getteri ne menjaju stanje forme, ve¢ samo olaksavaju Citanje

Getteri za pristup kontrolama forme

get ime() { return this.forml.controls.ime; }
// get ime() { return this.forml.get('ime'); }

get prezime() { return this.forml.controls.prezime; }
// get prezime() { return this.forml.get('prezime'); }

e controls.ime je direktan i tipizovan pristup sa autocomplete podrskom

» get('ime') koristi string klju¢ i nema pomoc¢ okruzenja (nema type-safety)
» get() je fleksibilniji i radi sa ugnjezdenim kontrolama

* lzbor pristupa zavisi od slozenosti forme

17

Validacija polja ime upotrebom getera

<div class="form-group">
<label for="ime">Ime</label>
<input id="ime" class="form-control"” formControlName="ime">

@if (ime.invalid && ime.touched) {
<div class="alert alert-danger”>Unesi ime</div>

}

</div>

18

Validacija polja prezime upotrebom getera

<div class="form-group">
<label for="prezime">Prezime</label>
<input id="prezime" class="form-control"” formControlName="prezime">

@if (prezime.invalid && prezime.touched) {
<div class="alert alert-danger">
Unesi prezime
</div>

}

</div>

19

Pristup validacionim greskama (errors)

* errors je objekat koji sadrzi validacione greske za FormControl
 Svaki klju€ u errors objektu odgovara nazivu validatora

* ime.errors?.['required'] proverava da li je aktivha greska validatora
required

e Operator ?. sprecava gresku ako errors trenutno ne postoji
 Alternativno, moze se koristiti metoda hasError('required’)
 hasError() vraca true ako je odredena validaciona greska aktivna

* Ovo je ispravan i preporucen nacin provere pojedinacnih validacionih
gresaka

Definisanje vise validatora za polje ime

forml = new FormGroup({
ime: new FormControl('', [Validators.required, Validators.minLength(3)]),
prezime: new FormControl('', Validators.required)

})s

@if (ime.invalid && ime.dirty) {

<div class="alert alert-danger">
@if (ime.errors?.['required']) {
<div>Unesite ime</div>
}
@if (ime.errors?.['minlength']) {
<div>Najmanje 3 karaktera</div>

}

</div>

v TN gtoss

C @ O localhost:4200

Reaktivne forme

Ime

Unesite ime

Prezime

rikaz validacionih gresaka

s

W@ O () welcome <> +

Console Issues +
B @ topvy B = Filter
Default levels » Mo Issues 2 hidden 2§3

Angular is running in debug_nod
development mode.

v 1Y gtao2s

C (A © localhost:4200

Reaktivne forme

Ime
Ma

Najmanje 3 karaktera

Prezime

Unesi prezime

[y @_J O @ Welcome

Console Issues T+

B Q tpv ©

s + | (

B

= Filter

Default levels w No Issues 2 hidden £83

>

Angular is running in
development mode.

debug_node.mjs:18:2

22

FormBuilder

FormBuilder je pomoc¢ni API za konstrukciju FormGroup/FormControl instanci, umesto
direktnog new

Metoda group() kreira instancu FormGroup

Metoda control() kreira instancu FormControl

FormBuilder se ubrizgava putem dependency injection-a u komponentu

Najcescée se koristi umesto ru¢nog pozivanja new FormGroup() i new FormControl()

import { FormGroup, FormBuilder, Validators } from '@angular/forms';

FormBuilder

export class Forme3Component {
title = 'FormBuilder';
forml: FormGroup;

constructor(private fb: FormBuilder) {
this.forml = this.fb.group({
ime: ['', [Validators.required, Validators.maxLength(10)]],
prezime: ['', Validators.required]

})s
}

get ime() { return this.forml.controls['ime']; }
get prezime() { return this.forml.controls['prezime']; }

onSubmit() {
console.log(this.forml.value);

}
}

Sablon komponente

<div class="form-group">
<label for="ime">Ime</label>
<input id="ime" class="form-control"” formControlName="ime">

@if (ime.invalid && ime.touched) {
<div class="alert alert-danger">
@if (ime.hasError('required’')) { <div>Unesite ime</div> }
@if (ime.hasError('maxlength')) { <div>NajviSe 10 karaktera</div> }
</div>

}

</div>

<div class="form-group">

<button type="submit" class="btn btn-primary"”
[disabled]="forml.invalid">PosSalji</button>
</div>

id atribut nije obavezan za reaktivne forme, ali se koristi zbog povezivanja sa <label> i pristupacnosti.

25

Reaktivna forma primer — model klasa

export class Student {
constructor(
public ime: string,
public prezime: string,
public pol: string,
public smer: string

) 1}

Komponenta StudentComponent

export class StudentComponent {
title = 'Reaktivne forme vezba';
smerovi = ['Informatika', 'Marketing', 'Menadzment'];

student: Student = new Student('', '', 'muski', 'Informatika');

studentForm = new FormGroup({
ime: new FormControl('', Validators.required),
prezime: new FormControl('', Validators.required),
pol: new FormControl('muski', Validators.required),
smer: new FormControl('Informatika', Validators.required)

})s

27

Geteri za pristup kontrolama

get ime() { return this.studentForm.controls.ime; }
get prezime() { return this.studentForm.controls.prezime; }
get pol() { return this.studentForm.controls.pol; }
get smer() { return this.studentForm.controls.smer; }

Metoda onSubmit()

onSubmit() {
if (this.studentForm.invalid) return;

const student = new Student(
this.ime.valuel,
this.prezime.valuel!l,
this.pol.value!,
this.smer.value!

)s

console.log(student);

}

e lje TypeScript non-null assertion operator
* Njime se govori kompajleru: ova vrednost ovde nije null.

Metode resetuj() i setDefault()

resetuj() { .

'I

}
//

//
//
//
//
//
//
//

setDefault() {

}

this.student = new Student('', "', 'muski',
nformatika'); .
this.studentForm.reset(this.student);

reset() — vraca formu u pocetno stanje
(vrednosti + statusi)

patchValue() — dozvoljava parcijalno
popunjavanje

setValue() — zahteva vrednosti za sva polja
forme

setDefault {
this.studentForm.patchValue({
ime: 'Marko',
prezime: 'Markovic',
pol: 'muski',
smer: 'Informatika'
1)
}

this.studentForm.setValue({

ime: 'Marko',

prezime: 'Markovic',

pol: 'muski',

smer: 'Informatika’
})s

30

Sablon komponente

<form [formGroup]="studentForm"” (ngSubmit)="onSubmit()">

<div class="form-group">
<label for="ime">Ime:</label>
<input id="ime" type="text" class="form-control" formControlName="ime">
@if (ime.invalid && ime.touched) { <div>Unesite ime.</div> }

</div>

<div class="form-group">
<label for="prezime">Prezime:</label>
<input id="prezime" type="text" class="form-control” formControlName="prezime">
@if (prezime.invalid && prezime.touched) { <div>Unesite prezime.</div> }

</div>

</form>

31

<div class="form-group">
<label>Odaberi pol:</label>
<div class="form-check">
<input type="radio" id="radiol" value="muski" class="form-check-input" formControlName="pol">
<label for="radiol" class="form-check-label">Muski</label>
</div>
<div class="form-check">
<input type="radio" id="radio2" value="zenski" class="form-check-input"” formControlName="pol">
<label for="radio2" class="form-check-label">Zenski</label>
</div>
</div>

<div class="form-group">
<label for="smer">0daberi smer:</label>
<select id="smer" class="form-control" formControlName="smer">

@for (smer of smerovi; track smer) { <option [value]="smer">{{ smer }}</option> }
</select>

</div>

32

<div class="form-group">
<button class="btn btn-primary" [disabled]="studentForm.invalid">Posalji</button>
<button type="button" class="btn btn-primary" (click)="setDefault()">Default</button>
<button type="button" class="btn btn-primary" (click)="resetuj()">Reset</button>
</div>

33

h s

1Y 12025

G (A © localhost:4200

Reaktivhe forme

Ime:

Marko

Prezime:

Markovic

Odaberi pol:

® Muski
O Zenski

QOdaberi smer:

Informatika

Posalji Default Reset

e _F. — O x

Cp 'Q_-J O @Welcome <> -+ @ X

=
Console lIssues T g B
B) topw B T Filter Default levels v+ @ 1
2 hidden §63
Angular is running in debug_node.mjs: 18267

development mode.

student-component.ts:41
P Student {ime: ‘Marko', prezime: 'Markovic', pol:
‘muski’, smer: ‘Informatika’}

34

Pitanje 1

Povezivanje postojece instance klase FormGroup sa HTML elementom <form>
u reaktivnim formama vrsi se koriscenjem direktive:

a. formGroup
b. formControlName
c. bindForm

Odgovor: a

Pitanje 2

Sinhronizacija instance klase FormControl sa DOM elementom u reaktivnim
formama vrsi se posredstvom direktive:

a. control
b. controlBind
c. formControlName

Odgovor: c

Pitanje 3

Kod reaktivnih formi :

a. Instance klase FormGroup i FormControl se kreiraju na osnovu sablona
komponente u kome se nalazi forma

b. Kreira se model forme u kome se instanciraju klase FormGroup i
FormControl pa se vrsi sinhronizacija tog modela sa formom

c. Forma se kreira instanciranjem klase ReactiveForm

Odgovor: b

Pitanje 4

Kod reaktivnih formi Angular servis koji se koristi za kreiranje instanci FormGroup i
FormControl naziva se:

a. FormGenerator
b. CreateForm
c. FormBuilder

Odgovor: c

Pitanje 5

U reaktivnim formama gde se Cuvaju vrednosti polja i validaciona stanja forme?

a. UHTML DOM elementima
b. Uinstancama FormGroup i FormControl

c. U sablonu komponente

Odgovor: b

Pitanje 6

U reaktivnim formama, Sta predstavlja svojstvo errors objekta FormControl?

a. Objekat koji sadrzi aktivne validacione greske za kontrolu
b. Niz poruka o greskama koje Angular automatski prikazuje
c. Boolean vrednost koja oznacava da li je kontrola validna

Odgovor: a

Pitanje /

Koja od sledecih opcija predstavlja ispravnu sintaksu za povezivanje FormGroup
instance sa HTML <form> elementom u reaktivnim formama?

a. <form (formGroup)="form1">
b. <form formGroup="form1">
c. <form [formGroup]="form1">

Odgovor: c

	Slide 1: Reaktivne forme
	Slide 2: Reaktivne forme
	Slide 3: Importovanje modula ReactiveFormsModule
	Slide 4: Klasa komponente
	Slide 5: Šablon glavne komponente
	Slide 6: Povezivanje šablona sa modelom
	Slide 7: Direktive formControlName i formGroup
	Slide 8: Šablon komponente
	Slide 9: Rezultat slanja forme
	Slide 10: Validacija reaktivne forme
	Slide 11: Validacija reaktivne forme
	Slide 12: Prikaz validacionih grešaka – polje ime
	Slide 13: Prikaz validacionih grešaka – polje prezime
	Slide 14: Zabrana sabmitovanje ne validnih podataka
	Slide 15: Validacione greške
	Slide 16: Getteri za pristup kontrolama forme
	Slide 17: Getteri za pristup kontrolama forme
	Slide 18: Validacija polja ime upotrebom getera
	Slide 19: Validacija polja prezime upotrebom getera
	Slide 20: Pristup validacionim greškama (errors)
	Slide 21: Definisanje više validatora za polje ime
	Slide 22: Prikaz validacionih grešaka
	Slide 23: FormBuilder
	Slide 24: FormBuilder
	Slide 25: Šablon komponente
	Slide 26: Reaktivna forma primer – model klasa
	Slide 27: Komponenta StudentComponent
	Slide 28: Geteri za pristup kontrolama
	Slide 29: Metoda onSubmit()
	Slide 30: Metode resetuj() i setDefault()
	Slide 31: Šablon komponente
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Pitanje 1
	Slide 36: Pitanje 2
	Slide 37: Pitanje 3
	Slide 38: Pitanje 4
	Slide 39: Pitanje 5
	Slide 40: Pitanje 6
	Slide 41: Pitanje 7

