Metode servisa za unos,
modifikaciju i brisanje podataka

Kreiranje klase

export class Osoba {
constructor(public osobald: number, public ime: string, public prezime: string, public starost: number)
{
}

Kreiranje servisa za komunikaciju sa Api -jem

import { Injectable } from '@angular/core';
import { HttpClient, HttpErrorResponse} from '@angular/common/http';
import { Observable, throwError } from 'rxjs';
import { Osoba } from './osoba';
import { catchError } from 'rxjs/operators’;
@Injectable({
providedIn: 'root'
)

export class OsobaService {
constructor(private http: HttpClient) { }
private apiUrl = '/api/osobe’;

private errorHandler(error: HttpErrorResponse) {
return throwError(() => error);

Komponenta

export class ListaOsobaComponent implements OnInit {

osobe: Osobal[] = [];

odabranaOsoba: Osoba = new Osoba(o, '', '', 0);
idOsobe = 0;

imeOsobe = "";

prezimeOsobe="";

starostOsobe = 0;

resetujPolja(): void {
this.imeOsobe = '';
this.prezimeOsobe = '';
this.starostOsobe =

}

constructor(private oServis: OsobaService) {

}

Slanje podataka na sever

* Angular komponenta:

* poziva metodu servisa
* kao argument prosleduje objekat Osoba

* Angular servis:
* prima objekat Osoba kao parametar metode
* serijalizuje objekat u JSON
* Salje JSON ka serveru asinhronim HTTP POST zahtevom

* odmah vraca Observable<Osoba>
* servis ne vraca odmah podatke, ve¢ vraca objekat koji ¢e podatke isporuciti kasnije

* U tom trenutku server jos nije odgovorio, nema podataka, postoji samo Observable koji
¢e emitovati podatke kada odgovor servera stigne

Slanje podataka na sever

* Server (Web API)

* prima JSON koji predstavlja objekat Osoba

e automatski mapira JSON u objekat tipa Osoba
e snima podatke (npr. u bazu)

e vraca Osoba kao JSON u HTTP odgovoru

e Angular servis (nakon odgovora servera)

e prima JSON odgovor
* mapira ga u objekat tipa Osoba
* emituje objekat kroz Observable

* Angular komponenta:
» preko subscribe() prima objekat Osoba koji je emitovao Angular servis
 koristi podatke (prikaz)

POST metoda servisa za komunikaciju sa Web Api
aplikacijom

Ova metoda Salje objekat tipa Osoba na server putem POST zahteva i vraca rezultat kao
Observable, uz centralizovanu obradu gresaka.

Metoda vraca Observable, a stvarni podaci se dobijaju tek kada server posalje odgovor i kada se
izvrsi subscribe()

ubaciOsobu(os: Osoba): Observable<Osoba> {
return this.http.post<Osoba>(this.apilrl, os).pipe(
catchError(this.errorHandler)
);
}

Komponenta — unos podataka

ubaciOsobu(ime: string, prezime: string, starost: number): void {

this.idOsobe = this.osobe.length + 1;
const osl = new Osoba(this.idOsobe, ime, prezime, starost);
this.oServis.ubaciOsobu(osl).subscribe({
next: podaci => {
console.log(podaci);
this.prikaziOsobe();
b
error: gr => console.log(gr)

3);

Komponenta kreira objekat Osoba, Salje ga servisu i kroz subscribe() prima odgovor servera.

Komponenta- interfejs za unos

<h3>Unos podataka</h3>
<div class="row">
<div class="col-6">

<div class="form-group">
<input type="text" [(ngModel)]="imeOsobe" placeholder="Unesi ime osobe"
class="form-control">

<input type="text" [(ngModel)]="prezimeOsobe" placeholder="Unesi prezime osobe“
class="form-control">

<input type="number" [(ngModel)]="starostOsobe" placeholder="Unesi starost osobe“
class="form-control">

<button class="btn btn-secondary" (click)="ubaciOsobu(imeOsobe, prezimeOsobe, starostOsobe)">
Dodaj osobu</button>

<button class="btn btn-danger" (click)="resetujPolja()">Resetuj</button>
</div>
</div>
</div>

Interfejs za unos podataka

v MY 2025 X 4 s
C @ O localhost:4200 Al SIS |

* 6 Marija Petrovic

6

Unos podataka

Marija
Petrovic

22

Dodaj osobu

L *J

10

DELETE metoda — brisanje podataka

 Komponenta poziva metodu servisa i prosleduje ID
e Servis Salje asinhroni HTTP DELETE zahtev serveru

e Server brise podatke i vraca potvrdu

 Servis emituje ID obrisanog objekta kroz Observable
 Komponenta preko subscribe() azurira prikaz

* DELETE zahtev ne vraca podatke, vec informaciju da je brisanje
uspesno

DELETE metoda servisa za komunikaciju sa Web
Api aplikacijom

obrisiOsobu(id: number): Observable<number> {
const url = "${this.apiUrl}/${id}";
return this.http.delete<void>(Curl).pipe(
map(() => id),
catchError(this.errorHandler)
)
}

* DELETE odgovor servera cesto nema telo (nema podataka)
* map(() => id) omogucava da servis vrati ID obrisanog objekta, iako
DELETE odgovor servera ne sadrzi podatke

Komponenta — brisanje podataka

obrisiOsobu(): void {
this.oServis.obrisiOsobu(this.idOsobe).subscribe({

next: (id) => {
console.log('Obrisana osoba sa ID:', id);
this.prikaziOsobe();

}s

error: (greska) => {
console.log('GresSka:"', greska);

}
})s

* Poziva se metoda servisa za brisanje sa prosledenim ID-jem
* subscribe() aktivira HTTP DELETE zahtev

* next se izvrSava nakon uspesnog brisanja na serveru

e error se izvrSava ako dode do greske tokom brisanja

Komponenta — interfejs za brisanje

<div class="row">
<div class="col-6">
<div class="form-group">
<label for="idOsobe">ID Osobe:</label>
<input type="number" id="idOsobe" [(ngModel)]="idOsobe“
class="form-control" placeholder="Unesi ID osobe">
</div>

<button class="btn btn-danger" (click)="obrisiOsobu()">0brisi osobu
</button>
</div>
</div>

14

Interfejs za brisanje podataka

VIR AN X +

T R © localhost:4200

Dodaj osobu

Brisanje podataka
ID Osobe:

3

QD0 + - ® X

[B @ top* T = Filter
Default levels w @ 34 2 hidden §03

Amgular is debug_node.mjs:18367
running in development mode.

Obrisan listaosoba-component.ts:67
a osoba sa ID: 3

>

Console Issues G B

15

UT metoda servisa za komunikaciju sa Web Api
olikacijom

promeniOsobu(os: Osoba): Observable<Osoba> {
const url = "${this.apiUrl}/${os.id}";

return this.http.put<Osoba>(url, os).pipe(
catchError(this.errorHandler)

);

}

PUT metoda Salje izmenjeni objekat serveru i vra¢a azurirani objekat kroz Observable, uz obradu
gresaka

Komponenta -promena podataka

promeniOsobu(): void {
this.oServis.promeniOsobu(this.odabranaOsoba).subscribe({
next: (izmenjenaOsoba) => {
console.log('Osoba je uspesno promenjena:');
this.prikaziOsobe();

3
error: (greska) => {
console.log('Greska prilikom promene osobe:', greska);
}
1)

}

Komponenta — sablon za promenu

<h3>Promena podataka</h3>
<div class="row">
<div class="col-6">
<div class="form-group">
<label for="ime">Ime:</label>
<input type="text" id="ime" [(ngModel)]="odabranaOsoba.ime" class="form-control">
</div>
<div class="form-group">
<label for="prezime">Prezime:</label>
<input type="text" id="prezime" [(ngModel)]="odabranaOsoba.prezime" class="form-control">
</div>
<div class="form—-group">
<label for="starost">Starost:</label>
<input type="number" id="starost" [(ngModel)]="odabranaOsoba.starost" class="form-control">
</div>

<button class="btn btn-primary" (click)="promeniOsobu()">Promeni osobu</button>
</div>

18

Interfejs za promenu podataka

~ Y jra02s x 4+ — O X
C @ O localhost4200 5 ’ v @@ |
.-rllii"iivlv'" A G] ljg D + wen (’P) hd
B © topy TS = Filter
Default levels w # 36 2 hidden £63
Promena pOdataka Angular is debug_node.mjs:18267

running in development mode.

Ime: Osoba listaosoba-component.ts:79

je uspeino promenjena:

Jovan >

Prezime:

Jovi¢

Starost:

27

Promeni osobu - Console Issues ar ¢ |

Primer web api -aplikacije
B85 © O [webapi x + - o x https://api.aritonovic.com/

< G & https://api.aritonovic.com e o= |

web api dozvoljava CORS zahteve

Magacin

Kategorije
Kategorija 1
Proizvodi
Proizvod 1

Proizvodi iz kategorije 1

https://api.aritonovic.com/

Prikaz kategorija

https://api.aritonovic.com/kategorije

w D O [apiaritonovic.com/kategorije x +

& (3 (3) https://api.aritonovic.com/kategorije
10
2 {
3 "kategorijaId": "1",
4 "naziv": "Alkcholna, bezalkoholna pica”
5 b
6 {
7 "kategorijaId": "4",
8 "naziv": "Hleb i peciva"
9 1,
10 I
11 "kategorijaId": "2",
12 "naziv”: "Mleko i mlecni proizvodi™
13 1,
14 i
5 "kategorijald": "3",
16 "naziv®: "Slatkisi i grickalice”
17 }

21

https://api.aritonovic.com/api/kategorije

Prikaz proizvoda

https://api.aritonovic.com/proizvodi

[

6 api.aritonovic.com/proizvodi x ek

& C m 25 api.aritonovic.com/proizvodi

'Pretty—print
1

[

¥s

Is

"proizvodId”: "1",
"kategorijald™: "1",
“naziv": "Coca-Cola 11 PET",
"cena": "B@.08"

"proizvodId®: "2V,

"kategorijald™: "1",

"naziv": "Sok pomorandza Happy day 11",
"cena": "155.@@"

"proizvodId®: "3V,

"kategorijald™: "1",

"naziv": "Kafa mlevena Grand Gold 2@ag",
"cepa™: "24@.88"

"proizvodId”: "4",

"kategorijald™: "1",

"naziv": "Sok pomorandza Mext Classic 11",
"cena™: "125.@8"

"proizvodId”: "5",
"kategorijald™: "1",

“naziv”: "Fanta limenka @,331",
"cena": "5@.88"

22

https://api.garitonovic.com/proizvodi

Bootstrap aplikacije

import { bootstrapApplication } from '@angular/platform-browser’;
import { AppComponent } from './app/app.component’;
import { provideHttpClient } from '@angular/common/http';

bootstrapApplication(AppComponent, {
providers: [
provideHttpClient()

]
})s

23

Klasa Proizvod

export class Proizvod {
constructor(public proizvodId: number, public kategorijald: number,
public naziv: string, public cena: number, public opis: string) {

¥

}

Klasa MagacinService

@Injectable({
providedIn: 'root',
})
export class MagacinService {
apiUrl = 'https://api.aritonovic.com';

constructor(private http: HttpClient) { }

vratiProizvode(): Observable<Proizvod[]> {
return this.http.get<Proizvod[]>(this.apiUrl + '/proizvodi')
.pipe(catchError(this.errorHandler));
}

private errorHandler(error: HttpErrorResponse): Observable<never> {
return throwError(() => error);

}
}

Observable<never> govori TypeScript-u: ,,ovde se ne emituju podaci, samo greska”

GET metoda servisa — preuzimanje podataka

e Salje HTTP GET zahtev ka Web API-ju

* Preuzima listu proizvoda sa rute /proizvodi
 Server vraca podatke u JSON formatu

* JSON predstavlja niz objekata tipa Proizvod

e Angular automatski mapira JSON u Proizvod[]

* VracCa rezultat kao Observable<Proizvod[]>
* Metoda ne vrac¢a podatke odmah
* Vraca Observable, jer je HTTP GET zahtev asinhron
e Kada server odgovori: Observable emituje niz proizvoda (Proizvod(])
 Komponenta dobija podatke tek nakon subscribe()

* Greske tokom zahteva se obraduju pomocu errorHandler

Klasa komponente Proizvodi

export class ProizvodiComponent implements OnInit {
proizvodi: Proizvod[] = [];
constructor(private mServis: MagacinService) {}

prikaziProizvode(): void {
this.mServis.vratiProizvode().subscribe({
next: proizvodi => this.proizvodi = proizvodi,
error: greska => console.log('Greska: ' + greska)

})s
}

ngOnInit(): void {
this.prikaziProizvode();

}

Metoda komponente

« Komponenta preko servisa asinhrono preuzima listu proizvoda i
prikazuje ih nakon odgovora servera

* Metoda prikaziProizvode():
 Poziva GET metodu servisa

* Pretplacuje se na Observable<Proizvod[]>
* next:prima JSON podatke mapirane u Proizvod[]smesta ih u niz proizvodi
e error:prima gresku sa serveraispisuje poruku u konzoli

Sablon komponente proizvodi

<div class="row">
<div class="col-6">
<table class="table table-bordered table-striped">
<thead>
<tr>
<th>ID</th>
<th>Naziv</th>
<th>Cena</th>
</tr>
</thead>

<tbody>
@for (proizvod of proizvodi; track proizvod.proizvodId) {
<tr>
<td>{{ proizvod.proizvodId }}</td>
<td>{{ proizvod.naziv }}</td>
<td>{{ proizvod.cena }}</td>
</tr>

}
</tbody>
</table>
</div>
</div>

29

Prikaz podataka

i\ 1t2025 x + —] X

< C [] @ localhost:4200 lf_", A = Oe & e =
&

ID Naziv Cena

1 Coca-Cola 11 PET 80.00

2 Sok pomorandza Happy day 1l 155.00

3 Kafa mlevena Grand Gold 200g 240.00

4 Sok pomorandza Next Classic 11 125.00

5 Fanta limenka 0,33l 50.00

6 Jogurt Balans +probiotik 1.5kg Pet 152.00

7 Mleko ster.2.8%mm Moja kravica BPslim 1L 100.00

8 Sir President Somborska 500g 260.00 v

-.‘— | g

30

HTML forme

Element <form>

* Element <form> omogucava unos podataka od strane korisnika

e Atribut action elementa <form> odreduje URL adresu (ili serversku
metodu) na koju se podaci sa forme Salju

e Atribut method specificira nacin slanja podataka
* GET metoda je podrazumevana opcija

 Atribut enctype odreduje nacin enkodovanja podataka sa forme pre
slanja serveru

Kontrole forme - element <input>

* Element <input> je osnovni HTML element za unos podataka

* Ima vise razliCitih oblika u zavisnosti od atributa type
* type="text"
* type="password"
* type="hidden"
* type="checkbox"
* type="radio"
* type="reset"
e type="submit
* type="image"
* type="button"
e type="file"
* type="email"

Atributi <input> elementa

 Atribut id koristi se za pristup elementu iz CSS-a ili JavaScripta

e Atribut id mora biti jedinstven u okviru stranice (forme)

 Atribut value postavlja podrazumevanu vrednost za numericke i tekstualne
kontrole za unos podataka

Atribut name se koristi od strane servera da se referenciraju polja forme kada se ona
submituje, takode se koristi za pristup elementu iz klijentskog koda

Angular koristi atribut name za identifikaciju kontrole unutar forme

Atribut placeholder opisuje ocekivanu vrednost unutar tekstualnog polja

Atribut required oznacava da je polje obavezno i da se forma ne moze poslati ukoliko
je polje prazno

Text polje

* Element <input type="text"> kreira polje za unos teksta

* Svojstvo value sluzi za Citanje i postavljanje unetog teksta iz JavaScript
koda

<input type="text" name="ime" id="textIme">

Element <label>

* Element <label> sluzi za pridruzivanje teksta ulaznoj kontroli na
osnovu vrednosti atributa for, koji mora odgovarati id atributu
ulaznog elementa

* Klik na tekst <label> elementa automatski postavlja fokus na
povezanu ulaznu kontrolu

* Element <label> poboljsava pristupacnost forme, jer CitaCi ekrana
povezuju opis sa odgovarajuéim poljem

<label for="textIme">Ime:</label>

<input type="text" name="ime" id="textIme">

Element <fieldset>

* Element <fieldset> je opciona HTML kontrola koja sluzi za
grupisanje povezanih kontrola unutar forme

e Unutar <fieldset> elementa moze se nalaziti element
<legend>, koji opisuje grupu kontrola

* Ako se koristi, <legend> mora biti prvi element unutar
<fieldset> elementa

Element <button>

* Element <button> se koristi za definisanje dugmeta u HTML formi
* Podrazumevana vrednost atributa type za <button> element je submit

e Atribut type moze imati sledece vrednosti:
e submit
* reset
* button

* U Angular aplikacijama preporucuje se eksplicitno navodenje atributa
type, kako bi se izbeglo nenamerno slanje forme

<button type="submit">Posalji</button>

Primer HTML forme sa upotrebom elementa
fieldset

<form action="/primer@l.html" method="get">
<fieldset>
<legend>Vasi podaci</legend>

<label for="textIme">Ime:</label>

<input type="text" name="ime" id="textIme" required>

<label for="textPrezime">Prezime:</label>

<input type="text" name="prezime" id="textPrezime" required>

<button type="submit">PosSalji</button>
</fieldset>
</form>

39

Primer HTML forme sa upotrebom elementa
fieldset

-

e @ Cocument X +

< (A | @ 127.0.0.1:5500/index.html

40

Forma bez upotrebe fieldset elementa

<form action="/primere2.html" method="get">
<label for="textIme">Ime:</label>

<input type="text" name="ime" id="textIme" required>

<label for="textPrezime">Prezime:</label>

<input type="text" name="prezime" id="textPrezime" required>

<button type="submit">PoSalji</button>
</form>

41

Forma bez upotrebe fieldset elementa

s @ Document X 4+ — O o
G | ® 127.0.0.1:5500/primer01.html <7 f e [B

Im

Pre

| Pozalji |

42

Element <textarea>

* Element <textarea> predstavlja multiline polje za unos teksta

<form action="">
<label for="komentar">Unesite komentar:</label>

<textarea
name="komentar"
id="komentar"
cols="30"
rows="10"
placeholder="Unesite komentar..."
required></textarea>

<button type="submit">PosSalji</button>
</form>

43

Prikaz tekst oblasti

A @ Document X -|-
C (R ® 127.0.0.1:5500/primer02.html

Unesite komentar:
|L-1e5ite komentar. ..

| Posalji |

44

Element <select>

* Element <select> se koristi za definisanje drop-down liste ili listbox
kontrole

* Element <option> definiSe pojedinacne stavke liste
 Atribut value odreduje vrednost koja se salje serveru
 Atribut selected odreduje podrazumevano izabranu stavku

* Ako se koristi atribut size sa vrednos¢u vecom od 1, lista se prikazuje
kao listbox

Element <select>

<form action="">
<select name="stavka" id="stavka">
<option value="1" selected>Stavka 1</option>
<option value="2">Stavka 2</option>
<option value="3">Stavka 3</option>
</select>

<button type="submit">PoSalji</button>
</form>

S @ Document * RS = O X

G (| ® 127.0.0.1:5500/primer03.html iy g‘ e [<B
Stavka 1 v |

| Pozalji |

46

Element <select> sa atributom size

 Atribut size odreduje broj vidljivih stavki u <select> elementu

* Ako je vrednost atributa size veca od 1, <select> se prikazuje kao
listbox

 Korisnik moze da izabere jednu stavku (vise stavki samo uz atribut
multiple)

Element <select> sa atributom size

<form action="">
<select name="stavka" id="stavka" size="3">
<option value="1">Stavka 1</option>
<option value="2">Stavka 2</option>
<option value="3">Stavka 3</option>
<option value="4">Stavka 4</option>

</select>

<button type="submit">PoSalji</button>
</form>
v @ pocument X 4 — 0 X
&< C M | © 127.00.1:5500/primer04.html 7 f S |

Stavka 1 a
Stavka 2
Stavka 3 =

| Posalji |

48

Kontrole checkbox i radio button

* Element <input type="checkbox"> kreira checkbox kontrolu i
omogucava nezavisan izbor vise opcija

* Element <input type="radio"> kreira radio button i omogucava izbor
jedne opcije unutar iste grupe
 Atribut checked odreduje da je kontrola podrazumevano selektovana

* U JavaScript klijentskom kodu, trenutno stanje kontrole Cita se preko
svojstva checked, koje ima logicku vrednost (true / false)

* Prilikom slanja HTML forme, za selektovane checkbox i radio kontrole
salje se par name=value; ako atribut value nije naveden,
podrazumevana vrednost je on

HTML checkbox

<form action="">
<input id="CheckBox1l" type="checkbox" name="CheckBox1">
<label for="CheckBox1">Stavka 1</label>

<input id="CheckBox2" type="checkbox" name="CheckBox2">
<label for="CheckBox2">Stavka 2</label>

<input id="CheckBox3" type="checkbox" name="CheckBox3">
<label for="CheckBox3">Stavka 3</label>

<button type="submit">Posalji</button>
</form>

50

Prikaz checkbox kontrola

N @ Document x 4+ — O X
L& G Q@ ® 127.00.1:5500/primer05.html g f B
() Stavka 1
Stavka 2
[J Stavka 3

| Posalji |

W @ Document x =+ — O X
L& O R ® 127.00.1:5500/primer05html?CheckBox2=on 7 f e (B
U Stavka 1
[Stavka 2
[Stavka 3

| Posalji | |

Grupa radiobutton kontrola, svojstvo name

* Element <input type="radio"> omogucava izbor jedne opcije.

e Radio buttoni pripadaju istoj grupi ako imaju istu vrednost atributa
name

e Unutar jedne grupe moze biti selektovana samo jedna radio kontrola

* Atribut value odreduje vrednost koja se Salje serveru za izabranu
opciju

* Prilikom slanja HTML forme, serveru se salje jedan par name=value za
selektovani radio button

* Ako radio button nije selektovan, ne salje se nikakva vrednost

Prikaz radiobutton kontrola

<form action="" method="get">
<input type="radio" name="opcije" id="radiol" value="v1">
<label for="radiol">Opcija 1</label>

<input type="radio" name="opcije" id="radio2" value="v2">
<label for="radio2">Opcija 2</label>

<input type="radio" name="opcije" id="radio3" value="v3">
<label for="radio3">Opcija 3</label>

<button type="submit">PoSalji</button>

</form>
s @ Document x 4+ — O X s @ Document x 4+
G (| © 127.0.0.1:5500/primer06.html iy f N | | &« O (© 127.0.0.1:5500/primer0&.html?opcije=v2
© Opeija 1 - O Opcija 1
® Opeija 2 O Opcija2
O Opeija 3 © Opeija 3
| Posalji | | Poszalji |

53

Angular forme

Forma

* Forma se koristi za prikupljanje podataka od korisnika

* Angular koristi dva tipa formi:
* Template-driven forme (TDF)
e Reaktivne forme (model driven forms)

* Klasom FormControl predstavlja se jedno ulazno polje Angular forme
* kod TDF ga Angular kreira automatski,
* kod reaktivnih formi programer ga eksplicitno kreira

* Klasom FormGroup predstavlja se grupa (kolekcija) kontrola forme

FormControl klasa

* Polje forme mozemo kreirati i iz koda:
let ime = new FormControl();

 Svojstvo value vracda trenutni sadrzaj ovog polja (ime.value)
 Svojstvo errors vraca objekat gresaka ili null
* Svojstvo pristine ima vrednost true ukoliko vrednost polja nije menjana

 Svojstvo dirty vraca true ukoliko je vrednost polja promenjena u odnosu na
pocetnu

* Svojstvo touched ima vrednost true ukoliko je polje dobilo i izgubilo fokus

 Svojstvo untouched ima vrednost true ukoliko polje nikada nije bilo u
fokusu

* Svojstvo valid vraca true ukoliko je polje proslo validaciju

FormGroup klasa

let adresa= new FormGroup({
ulica : new FormControl(""),
grad : new FormControl(""),
postanskiBroj : new FormControl("")

});

 Omogucava upravljanje grupom kontrola forme

e adresa.grad je nacin da se pristupi kontroli unutar grupe adresa

* Svojstvo value vraca JSON objekat sa vrednostima svih kontrola

» Svojstvo errors vraca objekat gresaka grupe ili null

* Svojstvo valid vraca true ukoliko su sve kontrole grupe prosle validaciju

Template Driven Forms (TDF)

* Importuje se modul FormsModule iz biblioteke @angular/forms

e Kada se ukljuci FormsModule Angular <form> elementu automatski
dodaje direktivu ngForm

* Direktiva ngForm radi sledece:
e automatski kreira instancu FormGroup koja odgovara kompletnoj formi
 kreira instancu klase FormControl za svaku kontrolu sa direktivom ngModel

* Instanci ngForm i svakoj instanci FormControl u sablonu mozemo
dodeliti lokalnu promenljivu

* Koristimo dogadaj ngSubmit da posaljemo klasi komponente podatke
sa forme

Komponenta

import { Component} from '@angular/core';
import { FormsModule } from '@angular/forms’;

@Component ({
selector: 'app-root',
imports: [FormsModule],
templateUrl: './app.html’,
styleUrl: './app.css'

})

export class App {
title = 'TDF forme';

¥

59

Sablon komponente

<form>
<div class="form-group">
<label for="ime">Ime</label>
<input type="text" name="ime" id="ime" class="form-control">
</div>

<div class="form-group">

<label for="prezime">Prezime</label>

<input type="text" name="prezime" id="prezime" class="form-control">
</div>

<div class="form-group">
<button type="submit" class="btn btn-primary">Posalji</button>
</div>
</form>

60

Direktive ngForm, ngModel, dogadaj ngSubmit

<form #forml="ngForm" (ngSubmit)="onSubmit(forml)">
<div class="form-group">
<label for="ime">Ime</label>
<input type="text" name="ime" id="ime" class="form-control” ngModel />
</div>

<div class="form-group">

<label for="prezime">Prezime</label>

<input type="text" name="prezime" id="prezime" class="form-control” ngModel />
</div>

<div class="form-group">
<button type="submit" class="btn btn-primary">Posalji</button>
</div>
</form>

61

Direktive ngForm, ngModel, dogadaj ngSubmit

* Lokalna template promenljiva je identifikator definisan pomocu
prefiksa # u HTML sablonu, koji predstavlja referencu na formu ili
kontrolu

* Lokalna templejt promenljiva #form1 daje referencu na instancu
NgForm objekta

* Direktiva ngModel govori Angularu da za svako polje kreira instancu
klase FormControl

 Dogadaj ngSubmit se aktivira prilikom slanja forme i prosleduje
NgForm instancu metodi komponente

Pristup kontrolama i vrednostima u TDF

* Objekat NgForm predstavlja celu HTML formu

 Svojstvo controls je recnik kontrola forme

* Klju€ u recniku je vrednost atributa name HTML kontrole

* Vrednost u recniku je odgovarajuci objekat tipa FormControl

* Pojedinacnoj kontroli pristupa se izrazom forma.controls['ime’]
* Vrednost kontrole dobija se preko forma.controls['ime'].value

* |zraz forma.value vraca objekat sa svim vrednostima kontrola (JSON
struktura)

* Svojstvo valid ima vrednost true ukoliko su sve kontrole forme validne

Klasa komponente

console
console
console
console
console

export class App {
title = 'TDF forme';
onSubmit(forma: NgForm) {

.log('Ime', forma.controls['ime'].value);
.log('Prezime', forma.controls['prezime'].value);
.log('JSON', forma.value);

.log('Forma validna:', forma.valid);

.log('Forma submitovana:', forma.submitted);

64

Konzola nakon slanja forme

e — - _— . S _ S - - —y
v TN gia025 x 4+ — | x|
& ‘
C (A © localhost4200 g ‘ G
ey |
Ime GJ 2 0O @ ¢f> @ Console } o (@) 2%
|
Marko B) topw B T Filter Default levels »+ & 19
2 hidden €§3
Prezime Angular is running in development debug _node.mjs:18267
mode.
Markovic Ime Marke app.ts:14
Prezime Markovic app.ts:15
ISON P fime: ‘Marko', prezime: ‘Markovic'} 8RR.L5:16
POSEilJI Forma validna: true app.ts:17
Forma submitovana: true app.ts:18

7

Console Issues 1 |

Model klasa forme

export class Osoba {
constructor(public osobald: number, public ime: string, public prezime: string) {

}

Klasa komponente

export class FormalComponent {
title = 'forme';

model = new Osoba(l, 'Marko', 'Markovic');
onSubmit() {

console.log('Ime"',this.model.ime);
console.log('Prezime',this.model.prezime);
console.log(this.model);

}
}

Komponenta sadrzi model objekat u koji se automatski upisuju vrednosti forme.

Povezivanje sa modelom

<div class="row">
<div class="col-6">

<form (ngSubmit)="onSubmit()">

<div class="form-group">
<label for="ime">Ime</label>
<input type="text" name="ime" class="form-control” [(ngModel)]="model.ime">

</div>

<div class="form-group">
<label for="prezime">Prezime</label>
<input type="text" name="prezime" id="prezime" class="form-control®
[(ngModel)]="model.prezime">

</div>

<button class="btn btn-primary" type="submit">Posalji</button>

</form>
</div>

Direktiva [(ngModel)] povezuje polja forme sa modelom i omogucava dvosmernu razmenu podataka.

68

orisnicki interfejs

v Y 2025

C () © localhost:4200

Ime

Marko

Prezime

Markovic

4

G o4 O Ij:tl <> @Console ﬁ -+ - (D) X

| B @ top * ‘G* = Filter Default levels » @ 23
2 hidden E@?
Angular is running in development debug_node.mjs:18367
mode.
Ime Marko formal-component.ts:18
Prezime Markovic formal-component.ts:19

formal-component.ts:28

¥ Osoba {oscbald: 1, ime: 'Marke’, prezime: 'Markovic’}
i
ime: "Marko”
osobald: 1
prezime: "Markovic”
P [[Prototype]]: Object

Console lssues T a B

69

Nacini rada sa Template-driven formama

TDF sa NgForm

TDF sa modelom

Podaci se Citaju iz NgForm objekta

Podaci se Citaju direktno iz modela

Pristup vrednostima preko form.value

Pristup vrednostima preko model objekta

NgForm se prosleduje metodi onSubmit(form)

NgForm se ne koristi u metodi

Pogodno za proveru statusa forme

Pogodno za rad sa poslovnim modelom

Fokus na formu

Fokus na podatke

70

Validacija u TDF

<div class="form-group">

<label>Ime</label>
<input type="text" name="ime" class="form-control"”

[(ngModel)]="model.ime" #ime="ngModel"
required minlength="4">

@if (ime.invalid && (ime.dirty || ime.touched)) {
<div class="alert alert-danger">
@if (ime.errors?.['required']) { <div>Unesite ime</div> }
@if (ime.errors?.['minlength']) { <div>Min. 4 karaktera</div> }

</div>

¥

</div>

* Lokalna promenljiva ime je instance klase NgModel koja interno koristi FormControl

» dirty — ovaj atribut oznacava da li je korisnik promenio vrednost u input polju
* touched — ovaj atribut oznacava da li je korisnik pomerio fokus u input polje i zatim ga napustio (touched)

71

Validacija u TDF

<div class="form-group">

<label for="ime">Ime</label>

<input type="text" name="ime" class="form-control" [(ngModel)]="model.ime"
#ime="ngModel" required minlength="4">

<div *ngIf="ime.invalid && (ime.dirty || ime.touched)" class="alert alert-
danger">
<div *ngIf="ime.errors?.['required']">
Unesite ime
</div>
<div *ngIf="ime.errors?.['minlength']">
Ime mora imati najmanje 4 karaktera
</div>
</div>
</div>

72

Prikaz validacionih gresaka

@& Pravopis i sustinske ispravke

< C

Ime

Unesite ime

Prezime

Markovic

iV 112025

[l @ localhost:4200

x A — a X
[af A B O @ =
ix [0 Elements Console >» LTI S
L ——
@ tpr @ Y Filter
Default levels ¥ Molssues 2 hidden {83
Angular is running in debug_node.mjs:18267
development mode.
»
What's new M x ‘

! Console

i\ it2025 x +

< C

Ime

M4

Min. 4 karaktera

[l @ localhost4200

Prezime

Markovic

— O X
lad A @ OB %k 6 =
i [0 Elements console > o X
P @ topy @ Y Filter
Default levels ¥ Mo lssues 2 hidden £83

Angular is running in debug_node.mjs:18267

development mode.

i Console What's new

73

Svojstvo valid forme

* Svojstvo valid Angular forme vraca true ako su sve kontrole validne

e Suprotno svojstvu valid je svojstvo invalid, koje vraca true ako bar
jedna kontrola nije validna

 Svojstva valid i invalid imaju i forma i sve kontrole forme
* Forma se salje koris¢enjem dogadaja ngSubmit

* Potrebno je onemoguciti (disable) submit dugme dok forma ne
postane validna

/Zabrana slanja nevalidnih podataka

<button class="btn btn-primary"
type="submit"
[disabled]="forml.invalid">
Posalji
</button>

Primer upotrebe TDF formi

export class Student {
constructor(
public ime: string,
public prezime: string,
public pol: string,
public smer: string
) {}
}

Primer upotrebe TDF formi

export class StudentComponent {
title = 'primer TDF';
smerovi = ['Informatika', 'Marketing', 'Menadzment'];
student: Student = new Student('', "', 'muski', 'Informatika');

setDefault() {

this.student.ime = 'Marko';

this.student.prezime = "Markovic';

this.student.pol = 'muski’;

this.student.smer = 'Informatika’;
}

resetuj() {
this.student = new Student('', "', 'muski', 'Informatika');
}
}

77

Metoda onSubmit()

onSubmit() {
console.log('Ime : + this.student.ime);
console.log('Prezime : ' + this.student.prezime);
console.log('Pol: ' + this.student.pol);
console.log('Smer: + this.student.smer);
this.resetuj();

PodesSavanje tekst polja

<form #studentForm="ngForm" (ngSubmit)="onSubmit()">
<div class="form-group mt-3">
<label>Unesite ime:</label>
<input name="ime" [(ngModel)]="student.ime"
#ime="ngModel" required class="form-control">

@if (ime.invalid && (ime.dirty || ime.touched)) {
<div>Unesite ime</div>
}
</div>
<div class="form-group mt-3">
<label>Unesite prezime:</label>
<input name="prezime" [(ngModel)]="student.prezime"
#prezime="ngModel" required class="form-control">

@if (prezime.invalid && (prezime.dirty || prezime.touched)) {
<div>Unesite prezime</div>

</form>

PodeSavanje radio inputa

<div class="form-group mt-3">
<label>Pol:</label>
<div>
<input type="radio" name="pol" value="muski"
[(ngModel)]="student.pol"
#pol="ngModel" required >
MusSki
</div>

<div>
<input type="radio" name="pol" value="zenski"
[(ngModel) |]="student.pol">
Zenski
</div>

@if (pol.invalid && (pol.dirty || pol.touched)) {
<div>Odaberite pol</div>

}

</div>

80

Select kontrola

<div class="form-group mt-3">
<label>Smer:</label>
<select name="smer" class="form-control"
[(ngModel)]="student.smer"
#smer="ngModel" required>
<option value="" disabled selected>-- izaberite smer --</option>

@for (s of smerovi; track s) {
<option [value]="s">{{ s }}</option>

}

</select>

@if (smer.invalid && (smer.dirty || smer.touched)) {
<div>Odaberite smer</div>

}

</div>

81

Podesavanje button elemenata

<div class="form-group mt-3">
<button class="btn btn-primary"
[disabled]="studentForm.invalid">
PoSalji
</button>

<button type="button"
class="btn btn-secondary”
(click)="setDefault()">
Default
</button>

<button type="button"
class="btn btn-outline-secondary”
(click)="resetuj()">
Reset
</button>
</div>

82

Korisnicki interfejs

FaY it2025 X +
< C [] @ localhost4200
Unesite ime:

Unesite prezime:

Pol:

® Muski
O Zenski

Smer:

Informatika v

Posalji Default Reset‘

2,

U A B OB <% 6

i< [D Elements Console > &
@ tpy @ ¥ Filter

Default levels ¥ | Molssues 2 hidden {83

X

Angular is running debug node.mjs:18267
in development mode.

Ime: Marko student-component.ts:27
Prezime: student-component.ts:28
Markovic
Pol: muski student-component.t=s:29
Smer: student-component.ts: 3@
Informatika

>

¢ Console What's new 0 x

83

Pitanje 1

Promena podataka na serveru vrsi se koris¢enjem sledece metode HttpClient
objekta:

a. get
b. put
Cc. update

Odgovor: b

Pitanje 2

Unos podataka na serveru vrsi se koriscenjem sledece metode HttpClient
objekta:

a. get
b. post
Cc. update

Odgovor: b

Pitanje 3

Brisanje podataka na serveru vrsi se koris¢cenjem sledece metode HttpClient
objekta:

a. get
b. delete
Cc. update

Odgovor: b

Pitanje 4

Ulazno polje angular forme predstavlja se klasom:

a. FormControl
b. Control
c. FormField

Odgovor: a

Pitanje 5

Ako se u komponentu importuje FormsModule tada se za svaki tag <form>
dodaje direktiva:

a. NgModel
b. NgForm
c. NgField

Odgovor: b

Pitanje 6

Direktiva NgForm:

a. kreira Form instancu koja odgovara formi NgForm
b. kreira FormControl instancu koja odgovara formi
c. kreira FormGroup instancu koja odgovara formi

Odgovor: c

Pitanje /

Svojstvo dirty instance klase FormControl vraca true ako je:

a. vrednost odgovarajuceg ulaznog polja promenjena
b. vrednost odgovarajuceg ulaznog polja nepromenjena
c. odgovarajuce ulazno polje prazno

Odgovor: a

	Slide 1: Metode servisa za unos, modifikaciju i brisanje podataka
	Slide 2: Kreiranje klase
	Slide 3: Kreiranje servisa za komunikaciju sa Api -jem
	Slide 4: Komponenta
	Slide 5: Slanje podataka na sever
	Slide 6: Slanje podataka na sever
	Slide 7: POST metoda servisa za komunikaciju sa Web Api aplikacijom
	Slide 8: Komponenta – unos podataka
	Slide 9: Komponenta- interfejs za unos
	Slide 10: Interfejs za unos podataka
	Slide 11: DELETE metoda – brisanje podataka
	Slide 12: DELETE metoda servisa za komunikaciju sa Web Api aplikacijom
	Slide 13: Komponenta – brisanje podataka
	Slide 14: Komponenta – interfejs za brisanje
	Slide 15: Interfejs za brisanje podataka
	Slide 16: PUT metoda servisa za komunikaciju sa Web Api aplikacijom
	Slide 17: Komponenta -promena podataka
	Slide 18: Komponenta – šablon za promenu
	Slide 19: Interfejs za promenu podataka
	Slide 20: Primer web api -aplikacije
	Slide 21: Prikaz kategorija
	Slide 22: Prikaz proizvoda
	Slide 23: Bootstrap aplikacije
	Slide 24: Klasa Proizvod
	Slide 25: Klasa MagacinService
	Slide 26: GET metoda servisa – preuzimanje podataka
	Slide 27: Klasa komponente Proizvodi
	Slide 28: Metoda komponente
	Slide 29: Šablon komponente proizvodi
	Slide 30: Prikaz podataka
	Slide 31: HTML forme
	Slide 32: Element <form>
	Slide 33: Kontrole forme - element <input>
	Slide 34: Atributi <input> elementa
	Slide 35: Text polje
	Slide 36: Element <label>
	Slide 37: Element <fieldset>
	Slide 38: Element <button>
	Slide 39: Primer HTML forme sa upotrebom elementa fieldset
	Slide 40: Primer HTML forme sa upotrebom elementa fieldset
	Slide 41: Forma bez upotrebe fieldset elementa
	Slide 42: Forma bez upotrebe fieldset elementa
	Slide 43: Element <textarea>
	Slide 44: Prikaz tekst oblasti
	Slide 45: Element <select>
	Slide 46: Element <select>
	Slide 47: Element <select> sa atributom size
	Slide 48: Element <select> sa atributom size
	Slide 49: Kontrole checkbox i radio button
	Slide 50: HTML checkbox
	Slide 51: Prikaz checkbox kontrola
	Slide 52: Grupa radiobutton kontrola, svojstvo name
	Slide 53: Prikaz radiobutton kontrola
	Slide 54: Angular forme
	Slide 55: Forma
	Slide 56: FormControl klasa
	Slide 57: FormGroup klasa
	Slide 58: Template Driven Forms (TDF)
	Slide 59: Komponenta
	Slide 60: Šablon komponente
	Slide 61: Direktive ngForm, ngModel, događaj ngSubmit
	Slide 62: Direktive ngForm, ngModel, događaj ngSubmit
	Slide 63: Pristup kontrolama i vrednostima u TDF
	Slide 64: Klasa komponente
	Slide 65: Konzola nakon slanja forme
	Slide 66: Model klasa forme
	Slide 67: Klasa komponente
	Slide 68: Povezivanje sa modelom
	Slide 69: Korisnički interfejs
	Slide 70: Načini rada sa Template-driven formama
	Slide 71: Validacija u TDF
	Slide 72: Validacija u TDF
	Slide 73: Prikaz validacionih grešaka
	Slide 74: Svojstvo valid forme
	Slide 75: Zabrana slanja nevalidnih podataka
	Slide 76: Primer upotrebe TDF formi
	Slide 77: Primer upotrebe TDF formi
	Slide 78: Metoda onSubmit()
	Slide 79: Podešavanje tekst polja
	Slide 80: Podešavanje radio inputa
	Slide 81: Select kontrola
	Slide 82: Podešavanje button elemenata
	Slide 83: Korisnički interfejs
	Slide 84: Pitanje 1
	Slide 85: Pitanje 2
	Slide 86: Pitanje 3
	Slide 87: Pitanje 4
	Slide 88: Pitanje 5
	Slide 89: Pitanje 6
	Slide 90: Pitanje 7

