
Metode servisa za unos,
modifikaciju i brisanje podataka

Kreiranje klase

2

export class Osoba {
constructor(public osobaId: number, public ime: string, public prezime: string, public starost: number)

 {
}

}

Kreiranje servisa za komunikaciju sa Api -jem
import { Injectable } from '@angular/core';
import { HttpClient, HttpErrorResponse} from '@angular/common/http';
import { Observable, throwError } from 'rxjs';
import { Osoba } from './osoba';
import { catchError } from 'rxjs/operators';

@Injectable({
providedIn: 'root'

})
export class OsobaService {

constructor(private http: HttpClient) { }

private apiUrl = '/api/osobe';

 private errorHandler(error: HttpErrorResponse) {
return throwError(() => error);

 ...
}

}
3

Komponenta
export class ListaOsobaComponent implements OnInit {

osobe: Osoba[] = [];
odabranaOsoba: Osoba = new Osoba(0, '', '', 0);
idOsobe = 0;
imeOsobe = "";
prezimeOsobe="";
starostOsobe = 0;

resetujPolja(): void {
this.imeOsobe = '';
this.prezimeOsobe = '';
this.starostOsobe = 0;

}

constructor(private oServis: OsobaService) {
}

}

4

Slanje podataka na sever

• Angular komponenta:
• poziva metodu servisa

• kao argument prosleđuje objekat Osoba

• Angular servis:
• prima objekat Osoba kao parametar metode

• serijalizuje objekat u JSON

• šalje JSON ka serveru asinhronim HTTP POST zahtevom

• odmah vraća Observable<Osoba>
• servis ne vraća odmah podatke, već vraća objekat koji će podatke isporučiti kasnije

• U tom trenutku server još nije odgovorio, nema podataka, postoji samo Observable koji
će emitovati podatke kada odgovor servera stigne

5

Slanje podataka na sever

• Server (Web API)
• prima JSON koji predstavlja objekat Osoba
• automatski mapira JSON u objekat tipa Osoba
• snima podatke (npr. u bazu)
• vraća Osoba kao JSON u HTTP odgovoru

• Angular servis (nakon odgovora servera)
• prima JSON odgovor
• mapira ga u objekat tipa Osoba
• emituje objekat kroz Observable

• Angular komponenta:
• preko subscribe() prima objekat Osoba koji je emitovao Angular servis
• koristi podatke (prikaz)

6

POST metoda servisa za komunikaciju sa Web Api
aplikacijom

7

ubaciOsobu(os: Osoba): Observable<Osoba> {
return this.http.post<Osoba>(this.apiUrl, os).pipe(

catchError(this.errorHandler)
);

}

Ova metoda šalje objekat tipa Osoba na server putem POST zahteva i vraća rezultat kao
Observable, uz centralizovanu obradu grešaka.
Metoda vraća Observable, a stvarni podaci se dobijaju tek kada server pošalje odgovor i kada se
izvrši subscribe()

Komponenta – unos podataka

ubaciOsobu(ime: string, prezime: string, starost: number): void {

this.idOsobe = this.osobe.length + 1;
const os1 = new Osoba(this.idOsobe, ime, prezime, starost);
this.oServis.ubaciOsobu(os1).subscribe({
next: podaci => {
console.log(podaci);
this.prikaziOsobe();

},
error: gr => console.log(gr)

});
}

8

Komponenta kreira objekat Osoba, šalje ga servisu i kroz subscribe() prima odgovor servera.

Komponenta- interfejs za unos

9

<h3>Unos podataka</h3>
<div class="row">

<div class="col-6">

<div class="form-group">
<input type="text" [(ngModel)]="imeOsobe" placeholder="Unesi ime osobe"

 class="form-control">

<input type="text" [(ngModel)]="prezimeOsobe" placeholder="Unesi prezime osobe“

 class="form-control">

<input type="number" [(ngModel)]="starostOsobe" placeholder="Unesi starost osobe“

 class="form-control">

<button class="btn btn-secondary" (click)="ubaciOsobu(imeOsobe, prezimeOsobe, starostOsobe)">
 Dodaj osobu</button>

<button class="btn btn-danger" (click)="resetujPolja()">Resetuj</button>

</div>
</div>

</div>

Interfejs za unos podataka

10

DELETE metoda – brisanje podataka

• Komponenta poziva metodu servisa i prosleđuje ID

• Servis šalje asinhroni HTTP DELETE zahtev serveru

• Server briše podatke i vraća potvrdu

• Servis emituje ID obrisanog objekta kroz Observable

• Komponenta preko subscribe() ažurira prikaz

• DELETE zahtev ne vraća podatke, već informaciju da je brisanje
uspešno

11

DELETE metoda servisa za komunikaciju sa Web
Api aplikacijom

12

obrisiOsobu(id: number): Observable<number> {
const url = `${this.apiUrl}/${id}`;
return this.http.delete<void>(url).pipe(
map(() => id),
catchError(this.errorHandler)

);
}

• DELETE odgovor servera često nema telo (nema podataka)
• map(() => id) omogućava da servis vrati ID obrisanog objekta, iako

DELETE odgovor servera ne sadrži podatke

Komponenta – brisanje podataka

13

obrisiOsobu(): void {
this.oServis.obrisiOsobu(this.idOsobe).subscribe({
next: (id) => {

console.log('Obrisana osoba sa ID:', id);
this.prikaziOsobe();

},
error: (greska) => {
console.log('Greška:', greska);

}
});

}

• Poziva se metoda servisa za brisanje sa prosleđenim ID-jem
• subscribe() aktivira HTTP DELETE zahtev
• next se izvršava nakon uspešnog brisanja na serveru
• error se izvršava ako dođe do greške tokom brisanja

Komponenta – interfejs za brisanje

14

<div class="row">
<div class="col-6">
<div class="form-group">
<label for="idOsobe">ID Osobe:</label>
<input type="number" id="idOsobe" [(ngModel)]="idOsobe“

 class="form-control" placeholder="Unesi ID osobe">
</div>

<button class="btn btn-danger" (click)="obrisiOsobu()">Obriši osobu
 </button>

</div>
</div>

Interfejs za brisanje podataka

15

PUT metoda servisa za komunikaciju sa Web Api
aplikacijom

16

promeniOsobu(os: Osoba): Observable<Osoba> {
const url = `${this.apiUrl}/${os.id}`;

return this.http.put<Osoba>(url, os).pipe(
catchError(this.errorHandler)

);
}

PUT metoda šalje izmenjeni objekat serveru i vraća ažurirani objekat kroz Observable, uz obradu
grešaka

Komponenta -promena podataka

17

promeniOsobu(): void {
this.oServis.promeniOsobu(this.odabranaOsoba).subscribe({
next: (izmenjenaOsoba) => {
console.log('Osoba je uspešno promenjena:');
this.prikaziOsobe();

},
error: (greska) => {
console.log('Greška prilikom promene osobe:', greska);

}
});

}

Komponenta – šablon za promenu

18

<h3>Promena podataka</h3>
<div class="row">
<div class="col-6">

<div class="form-group">
<label for="ime">Ime:</label>
<input type="text" id="ime" [(ngModel)]="odabranaOsoba.ime" class="form-control">

</div>
<div class="form-group">
<label for="prezime">Prezime:</label>
<input type="text" id="prezime" [(ngModel)]="odabranaOsoba.prezime" class="form-control">

</div>
<div class="form-group">
<label for="starost">Starost:</label>
<input type="number" id="starost" [(ngModel)]="odabranaOsoba.starost" class="form-control">

</div>

<button class="btn btn-primary" (click)="promeniOsobu()">Promeni osobu</button>
</div>

Interfejs za promenu podataka

19

Primer web api -aplikacije

20

https://api.aritonovic.com/

web api dozvoljava CORS zahteve

https://api.aritonovic.com/

Prikaz kategorija

21

https://api.aritonovic.com/kategorije

https://api.aritonovic.com/api/kategorije

Prikaz proizvoda

22

https://api.aritonovic.com/proizvodi

https://api.garitonovic.com/proizvodi

Bootstrap aplikacije

23

import { bootstrapApplication } from '@angular/platform-browser';
import { AppComponent } from './app/app.component';
import { provideHttpClient } from '@angular/common/http';

bootstrapApplication(AppComponent, {
providers: [
provideHttpClient()

]
});

Klasa Proizvod

24

export class Proizvod {
constructor(public proizvodId: number, public kategorijaId: number,
public naziv: string, public cena: number, public opis: string) {

}
}

Klasa MagacinService

25

@Injectable({
providedIn: 'root',

})
export class MagacinService {
apiUrl = 'https://api.aritonovic.com';

constructor(private http: HttpClient) { }

vratiProizvode(): Observable<Proizvod[]> {
return this.http.get<Proizvod[]>(this.apiUrl + '/proizvodi')

.pipe(catchError(this.errorHandler));
}

private errorHandler(error: HttpErrorResponse): Observable<never> {
return throwError(() => error);

}
}

Observable<never> govori TypeScript-u: „ovde se ne emituju podaci, samo greška“

GET metoda servisa – preuzimanje podataka

• Šalje HTTP GET zahtev ka Web API-ju
• Preuzima listu proizvoda sa rute /proizvodi
• Server vraća podatke u JSON formatu
• JSON predstavlja niz objekata tipa Proizvod
• Angular automatski mapira JSON u Proizvod[]
• Vraća rezultat kao Observable<Proizvod[]>

• Metoda ne vraća podatke odmah
• Vraća Observable, jer je HTTP GET zahtev asinhron
• Kada server odgovori: Observable emituje niz proizvoda (Proizvod[])
• Komponenta dobija podatke tek nakon subscribe()

• Greške tokom zahteva se obrađuju pomoću errorHandler

26

Klasa komponente Proizvodi

27

export class ProizvodiComponent implements OnInit {

proizvodi: Proizvod[] = [];

constructor(private mServis: MagacinService) {}

prikaziProizvode(): void {
this.mServis.vratiProizvode().subscribe({

next: proizvodi => this.proizvodi = proizvodi,
error: greska => console.log('Greska: ' + greska)

});
}

ngOnInit(): void {
this.prikaziProizvode();

}

}

Metoda komponente

• Komponenta preko servisa asinhrono preuzima listu proizvoda i
prikazuje ih nakon odgovora servera

• Metoda prikaziProizvode():
• Poziva GET metodu servisa

• Pretplaćuje se na Observable<Proizvod[]>
• next:prima JSON podatke mapirane u Proizvod[]smešta ih u niz proizvodi

• error:prima grešku sa serveraispisuje poruku u konzoli

28

Šablon komponente proizvodi

29

<div class="row">
<div class="col-6">

<table class="table table-bordered table-striped">
<thead>

<tr>
<th>ID</th>
<th>Naziv</th>
<th>Cena</th>

</tr>
</thead>

<tbody>
@for (proizvod of proizvodi; track proizvod.proizvodId) {

<tr>
<td>{{ proizvod.proizvodId }}</td>
<td>{{ proizvod.naziv }}</td>
<td>{{ proizvod.cena }}</td>

</tr>
}

</tbody>
</table>

</div>
</div>

Prikaz podataka

30

HTML forme

Element <form>

• Element <form> omogućava unos podataka od strane korisnika

• Atribut action elementa <form> određuje URL adresu (ili serversku
metodu) na koju se podaci sa forme šalju

• Atribut method specificira način slanja podataka
• GET metoda je podrazumevana opcija

• POST metoda se koristi za slanje većih ili osetljivijih podataka

• Atribut enctype određuje način enkodovanja podataka sa forme pre
slanja serveru

32

Kontrole forme - element <input>

• Element <input> je osnovni HTML element za unos podataka

• Ima više različitih oblika u zavisnosti od atributa type
• type="text"

• type="password"

• type="hidden"

• type="checkbox"

• type="radio"

• type="reset"

• type="submit"

• type="image"

• type="button"

• type="file"

• type="email"
33

Atributi <input> elementa

• Atribut id koristi se za pristup elementu iz CSS-a ili JavaScripta

• Atribut id mora biti jedinstven u okviru stranice (forme)

• Atribut value postavlja podrazumevanu vrednost za numeričke i tekstualne
kontrole za unos podataka

• Atribut name se koristi od strane servera da se referenciraju polja forme kada se ona
submituje, takođe se koristi za pristup elementu iz klijentskog koda

• Angular koristi atribut name za identifikaciju kontrole unutar forme

• Atribut placeholder opisuje očekivanu vrednost unutar tekstualnog polja

• Atribut required označava da je polje obavezno i da se forma ne može poslati ukoliko
je polje prazno

34

Text polje

• Element <input type="text"> kreira polje za unos teksta

• Svojstvo value služi za čitanje i postavljanje unetog teksta iz JavaScript
koda

35

<input type="text" name="ime" id="textIme">

Element <label>

• Element <label> služi za pridruživanje teksta ulaznoj kontroli na
osnovu vrednosti atributa for, koji mora odgovarati id atributu
ulaznog elementa

• Klik na tekst <label> elementa automatski postavlja fokus na
povezanu ulaznu kontrolu

• Element <label> poboljšava pristupačnost forme, jer čitači ekrana
povezuju opis sa odgovarajućim poljem

36

<label for="textIme">Ime:</label>

<input type="text" name="ime" id="textIme">

Element <fieldset>

• Element <fieldset> je opciona HTML kontrola koja služi za
grupisanje povezanih kontrola unutar forme

• Unutar <fieldset> elementa može se nalaziti element
<legend>, koji opisuje grupu kontrola

• Ako se koristi, <legend> mora biti prvi element unutar
<fieldset> elementa

37

Element <button>

• Element <button> se koristi za definisanje dugmeta u HTML formi

• Podrazumevana vrednost atributa type za <button> element je submit

• Atribut type može imati sledeće vrednosti:
• submit
• reset
• button

• U Angular aplikacijama preporučuje se eksplicitno navođenje atributa
type, kako bi se izbeglo nenamerno slanje forme

38

<button type="submit">Posalji</button>

Primer HTML forme sa upotrebom elementa
fieldset

<form action="/primer01.html" method="get">
<fieldset>

<legend>Vaši podaci</legend>

<label for="textIme">Ime:</label>

<input type="text" name="ime" id="textIme" required>

<label for="textPrezime">Prezime:</label>

<input type="text" name="prezime" id="textPrezime" required>

<button type="submit">Pošalji</button>
</fieldset>
</form>

39

Primer HTML forme sa upotrebom elementa
fieldset

40

Forma bez upotrebe fieldset elementa

41

<form action="/primer02.html" method="get">
<label for="textIme">Ime:</label>

<input type="text" name="ime" id="textIme" required>

<label for="textPrezime">Prezime:</label>

<input type="text" name="prezime" id="textPrezime" required>

<button type="submit">Pošalji</button>
</form>

Forma bez upotrebe fieldset elementa

42

Element <textarea>

• Element <textarea> predstavlja multiline polje za unos teksta

43

<form action="">
<label for="komentar">Unesite komentar:</label>

<textarea
name="komentar"
id="komentar"
cols="30"
rows="10"
placeholder="Unesite komentar..."
required></textarea>

<button type="submit">Pošalji</button>

</form>

Prikaz tekst oblasti

44

Element <select>

• Element <select> se koristi za definisanje drop-down liste ili listbox
kontrole

• Element <option> definiše pojedinačne stavke liste

• Atribut value određuje vrednost koja se šalje serveru

• Atribut selected određuje podrazumevano izabranu stavku

• Ako se koristi atribut size sa vrednošću većom od 1, lista se prikazuje
kao listbox

45

Element <select>

46

<form action="">
<select name="stavka" id="stavka">

<option value="1" selected>Stavka 1</option>
<option value="2">Stavka 2</option>
<option value="3">Stavka 3</option>

</select>

<button type="submit">Pošalji</button>

</form>

Element <select> sa atributom size

• Atribut size određuje broj vidljivih stavki u <select> elementu

• Ako je vrednost atributa size veća od 1, <select> se prikazuje kao
listbox

• Korisnik može da izabere jednu stavku (više stavki samo uz atribut
multiple)

47

Element <select> sa atributom size

48

<form action="">
<select name="stavka" id="stavka" size="3">

<option value="1">Stavka 1</option>
<option value="2">Stavka 2</option>
<option value="3">Stavka 3</option>
<option value="4">Stavka 4</option>

</select>

<button type="submit">Pošalji</button>

</form>

Kontrole checkbox i radio button

• Element <input type="checkbox"> kreira checkbox kontrolu i
omogućava nezavisan izbor više opcija

• Element <input type="radio"> kreira radio button i omogućava izbor
jedne opcije unutar iste grupe

• Atribut checked određuje da je kontrola podrazumevano selektovana

• U JavaScript klijentskom kodu, trenutno stanje kontrole čita se preko
svojstva checked, koje ima logičku vrednost (true / false)

• Prilikom slanja HTML forme, za selektovane checkbox i radio kontrole
šalje se par name=value; ako atribut value nije naveden,
podrazumevana vrednost je on

49

HTML checkbox

<form action="">
<input id="CheckBox1" type="checkbox" name="CheckBox1">
<label for="CheckBox1">Stavka 1</label>

<input id="CheckBox2" type="checkbox" name="CheckBox2">
<label for="CheckBox2">Stavka 2</label>

<input id="CheckBox3" type="checkbox" name="CheckBox3">
<label for="CheckBox3">Stavka 3</label>

<button type="submit">Pošalji</button>
</form>

50

Prikaz checkbox kontrola

51

Grupa radiobutton kontrola, svojstvo name

• Element <input type="radio"> omogućava izbor jedne opcije.

• Radio buttoni pripadaju istoj grupi ako imaju istu vrednost atributa
name

• Unutar jedne grupe može biti selektovana samo jedna radio kontrola

• Atribut value određuje vrednost koja se šalje serveru za izabranu
opciju

• Prilikom slanja HTML forme, serveru se šalje jedan par name=value za
selektovani radio button

• Ako radio button nije selektovan, ne šalje se nikakva vrednost

52

Prikaz radiobutton kontrola

53

<form action="" method="get">
<input type="radio" name="opcije" id="radio1" value="v1">
<label for="radio1">Opcija 1</label>

<input type="radio" name="opcije" id="radio2" value="v2">
<label for="radio2">Opcija 2</label>

<input type="radio" name="opcije" id="radio3" value="v3">
<label for="radio3">Opcija 3</label>

<button type="submit">Pošalji</button>
</form>

Angular forme

54

Forma

• Forma se koristi za prikupljanje podataka od korisnika

• Angular koristi dva tipa formi:
• Template-driven forme (TDF)

• Reaktivne forme (model driven forms)

• Klasom FormControl predstavlja se jedno ulazno polje Angular forme
• kod TDF ga Angular kreira automatski,

• kod reaktivnih formi programer ga eksplicitno kreira

• Klasom FormGroup predstavlja se grupa (kolekcija) kontrola forme

55

FormControl klasa

• Polje forme možemo kreirati i iz koda:
let ime = new FormControl();

• Svojstvo value vraća trenutni sadržaj ovog polja (ime.value)

• Svojstvo errors vraća objekat grešaka ili null

• Svojstvo pristine ima vrednost true ukoliko vrednost polja nije menjana

• Svojstvo dirty vraća true ukoliko je vrednost polja promenjena u odnosu na
početnu

• Svojstvo touched ima vrednost true ukoliko je polje dobilo i izgubilo fokus

• Svojstvo untouched ima vrednost true ukoliko polje nikada nije bilo u
fokusu

• Svojstvo valid vraća true ukoliko je polje prošlo validaciju

56

FormGroup klasa

• Omogućava upravljanje grupom kontrola forme

• adresa.grad je način da se pristupi kontroli unutar grupe adresa

• Svojstvo value vraća JSON objekat sa vrednostima svih kontrola

• Svojstvo errors vraća objekat grešaka grupe ili null

• Svojstvo valid vraća true ukoliko su sve kontrole grupe prošle validaciju

57

let adresa= new FormGroup({
ulica : new FormControl(""),
grad : new FormControl(""),
postanskiBroj : new FormControl("")

});

Template Driven Forms (TDF)

• Importuje se modul FormsModule iz biblioteke @angular/forms

• Kada se uključi FormsModule Angular <form> elementu automatski
dodaje direktivu ngForm

• Direktiva ngForm radi sledeće:
• automatski kreira instancu FormGroup koja odgovara kompletnoj formi
• kreira instancu klase FormControl za svaku kontrolu sa direktivom ngModel

• Instanci ngForm i svakoj instanci FormControl u šablonu možemo
dodeliti lokalnu promenljivu

• Koristimo događaj ngSubmit da pošaljemo klasi komponente podatke
sa forme

58

Komponenta

59

import { Component} from '@angular/core';
import { FormsModule } from '@angular/forms';

@Component({
selector: 'app-root',
imports: [FormsModule],
templateUrl: './app.html',
styleUrl: './app.css'

})
export class App {
title = 'TDF forme';

}

Šablon komponente

60

<form>
<div class="form-group">
<label for="ime">Ime</label>
<input type="text" name="ime" id="ime" class="form-control">

</div>

<div class="form-group">
<label for="prezime">Prezime</label>
<input type="text" name="prezime" id="prezime" class="form-control">

</div>

<div class="form-group">
<button type="submit" class="btn btn-primary">Posalji</button>

</div>
</form>

Direktive ngForm, ngModel, događaj ngSubmit

<form #form1="ngForm" (ngSubmit)="onSubmit(form1)">
<div class="form-group">
<label for="ime">Ime</label>
<input type="text" name="ime" id="ime" class="form-control" ngModel />

</div>

<div class="form-group">
<label for="prezime">Prezime</label>
<input type="text" name="prezime" id="prezime" class="form-control" ngModel />

</div>

<div class="form-group">
<button type="submit" class="btn btn-primary">Posalji</button>

</div>
</form>

61

Direktive ngForm, ngModel, događaj ngSubmit

• Lokalna template promenljiva je identifikator definisan pomoću
prefiksa # u HTML šablonu, koji predstavlja referencu na formu ili
kontrolu

• Lokalna templejt promenljiva #form1 daje referencu na instancu
NgForm objekta

• Direktiva ngModel govori Angularu da za svako polje kreira instancu
klase FormControl

• Događaj ngSubmit se aktivira prilikom slanja forme i prosleđuje
NgForm instancu metodi komponente

62

Pristup kontrolama i vrednostima u TDF

• Objekat NgForm predstavlja celu HTML formu

• Svojstvo controls je rečnik kontrola forme

• Ključ u rečniku je vrednost atributa name HTML kontrole

• Vrednost u rečniku je odgovarajući objekat tipa FormControl

• Pojedinačnoj kontroli pristupa se izrazom forma.controls['ime’]

• Vrednost kontrole dobija se preko forma.controls['ime'].value

• Izraz forma.value vraća objekat sa svim vrednostima kontrola (JSON
struktura)

• Svojstvo valid ima vrednost true ukoliko su sve kontrole forme validne

63

Klasa komponente
export class App {
title = 'TDF forme';
onSubmit(forma: NgForm) {
console.log('Ime', forma.controls['ime'].value);
console.log('Prezime', forma.controls['prezime'].value);
console.log('JSON', forma.value);
console.log('Forma validna:', forma.valid);
console.log('Forma submitovana:', forma.submitted);

}
}

64

Konzola nakon slanja forme

65

Model klasa forme

66

export class Osoba {
 constructor(public osobaId: number, public ime: string, public prezime: string) {
 }
}

Klasa komponente

67

export class Forma1Component {
title = 'forme';

model = new Osoba(1, 'Marko', 'Markovic');

onSubmit() {

console.log('Ime',this.model.ime);
console.log('Prezime',this.model.prezime);
console.log(this.model);

}
}

Komponenta sadrži model objekat u koji se automatski upisuju vrednosti forme.

Povezivanje sa modelom

68

<div class="row">
<div class="col-6">

<form (ngSubmit)="onSubmit()">

<div class="form-group">
<label for="ime">Ime</label>
<input type="text" name="ime" class="form-control" [(ngModel)]="model.ime">

</div>
<div class="form-group">

<label for="prezime">Prezime</label>
<input type="text" name="prezime" id="prezime" class="form-control“

 [(ngModel)]="model.prezime">
</div>
<button class="btn btn-primary" type="submit">Posalji</button>

</form>
</div>

Direktiva [(ngModel)] povezuje polja forme sa modelom i omogućava dvosmernu razmenu podataka.

Korisnički interfejs

69

Načini rada sa Template-driven formama

70

TDF sa NgForm TDF sa modelom

Podaci se čitaju iz NgForm objekta Podaci se čitaju direktno iz modela

Pristup vrednostima preko form.value Pristup vrednostima preko model objekta

NgForm se prosleđuje metodi onSubmit(form) NgForm se ne koristi u metodi

Pogodno za proveru statusa forme Pogodno za rad sa poslovnim modelom

Fokus na formu Fokus na podatke

Validacija u TDF

71

<div class="form-group">
<label>Ime</label>
<input type="text" name="ime" class="form-control"

[(ngModel)]="model.ime" #ime="ngModel"
required minlength="4">

@if (ime.invalid && (ime.dirty || ime.touched)) {
<div class="alert alert-danger">
@if (ime.errors?.['required']) { <div>Unesite ime</div> }
@if (ime.errors?.['minlength']) { <div>Min. 4 karaktera</div> }
</div>

}
</div>

• Lokalna promenljiva ime je instance klase NgModel koja interno koristi FormControl
• dirty – ovaj atribut označava da li je korisnik promenio vrednost u input polju
• touched – ovaj atribut označava da li je korisnik pomerio fokus u input polje i zatim ga napustio (touched)

Validacija u TDF

72

<div class="form-group">
<label for="ime">Ime</label>
<input type="text" name="ime" class="form-control" [(ngModel)]="model.ime"

#ime="ngModel" required minlength="4">

<div *ngIf="ime.invalid && (ime.dirty || ime.touched)" class="alert alert-
danger">

<div *ngIf="ime.errors?.['required']">
Unesite ime

</div>
<div *ngIf="ime.errors?.['minlength']">

Ime mora imati najmanje 4 karaktera
</div>
</div>

</div>

Prikaz validacionih grešaka

73

Svojstvo valid forme

• Svojstvo valid Angular forme vraća true ako su sve kontrole validne

• Suprotno svojstvu valid je svojstvo invalid, koje vraća true ako bar
jedna kontrola nije validna

• Svojstva valid i invalid imaju i forma i sve kontrole forme

• Forma se šalje korišćenjem događaja ngSubmit

• Potrebno je onemogućiti (disable) submit dugme dok forma ne
postane validna

74

Zabrana slanja nevalidnih podataka

75

 <button class="btn btn-primary"
 type="submit"
 [disabled]="form1.invalid">
 Posalji
 </button>

Primer upotrebe TDF formi

76

export class Student {
 constructor(
 public ime: string,
 public prezime: string,
 public pol: string,
 public smer: string
) {}
}

Primer upotrebe TDF formi

77

export class StudentComponent {
title = 'primer TDF';
smerovi = ['Informatika', 'Marketing', 'Menadzment'];
student: Student = new Student('', '', 'muski', 'Informatika');

setDefault() {
this.student.ime = 'Marko';
this.student.prezime = 'Markovic';
this.student.pol = 'muski';
this.student.smer = 'Informatika';

}

resetuj() {
this.student = new Student('', '', 'muski', 'Informatika');

}
}

Metoda onSubmit()

78

onSubmit() {
console.log('Ime : ' + this.student.ime);
console.log('Prezime : ' + this.student.prezime);
console.log('Pol: ' + this.student.pol);
console.log('Smer: ' + this.student.smer);
this.resetuj();

}

Podešavanje tekst polja

79

<form #studentForm="ngForm" (ngSubmit)="onSubmit()">
<div class="form-group mt-3">
<label>Unesite ime:</label>
<input name="ime" [(ngModel)]="student.ime"

#ime="ngModel" required class="form-control">

@if (ime.invalid && (ime.dirty || ime.touched)) {
<div>Unesite ime</div>

}
</div>
<div class="form-group mt-3">
<label>Unesite prezime:</label>
<input name="prezime" [(ngModel)]="student.prezime"

#prezime="ngModel" required class="form-control">

@if (prezime.invalid && (prezime.dirty || prezime.touched)) {
<div>Unesite prezime</div>

}
</div>

</form>

Podešavanje radio inputa

80

<div class="form-group mt-3">
<label>Pol:</label>

<div>
<input type="radio" name="pol" value="muski"

[(ngModel)]="student.pol"
#pol="ngModel" required >

Muški
</div>

<div>
<input type="radio" name="pol" value="zenski"

[(ngModel)]="student.pol">
Ženski

</div>

@if (pol.invalid && (pol.dirty || pol.touched)) {
<div>Odaberite pol</div>

}
</div>

Select kontrola

81

<div class="form-group mt-3">
<label>Smer:</label>
<select name="smer" class="form-control"

[(ngModel)]="student.smer"
#smer="ngModel" required>

<option value="" disabled selected>-- izaberite smer --</option>

@for (s of smerovi; track s) {
<option [value]="s">{{ s }}</option>

}
</select>

@if (smer.invalid && (smer.dirty || smer.touched)) {
<div>Odaberite smer</div>

}
</div>

Podešavanje button elemenata

82

<div class="form-group mt-3">
<button class="btn btn-primary"

[disabled]="studentForm.invalid">
Pošalji

</button>

<button type="button"
class="btn btn-secondary"
(click)="setDefault()">

Default
</button>

<button type="button"
class="btn btn-outline-secondary"
(click)="resetuj()">

Reset
</button>

</div>

Korisnički interfejs

83

Pitanje 1

Promena podataka na serveru vrši se korišćenjem sledeće metode HttpClient
objekta:

a. get
b. put
c. update

Odgovor: b

84

Pitanje 2

Unos podataka na serveru vrši se korišćenjem sledeće metode HttpClient
objekta:

a. get
b. post
c. update

Odgovor: b

85

Pitanje 3

Brisanje podataka na serveru vrši se korišćenjem sledeće metode HttpClient
objekta:

a. get
b. delete
c. update

Odgovor: b

86

Pitanje 4

Ulazno polje angular forme predstavlja se klasom:

a. FormControl
b. Control
c. FormField

Odgovor: a

87

Pitanje 5

Ako se u komponentu importuje FormsModule tada se za svaki tag <form>
dodaje direktiva:

a. NgModel
b. NgForm
c. NgField

Odgovor: b

88

Pitanje 6

Direktiva NgForm:

a. kreira Form instancu koja odgovara formi NgForm
b. kreira FormControl instancu koja odgovara formi
c. kreira FormGroup instancu koja odgovara formi

Odgovor: c

89

Pitanje 7

Svojstvo dirty instance klase FormControl vraća true ako je:

a. vrednost odgovarajućeg ulaznog polja promenjena
b. vrednost odgovarajućeg ulaznog polja nepromenjena
c. odgovarajuće ulazno polje prazno

Odgovor: a

90

	Slide 1: Metode servisa za unos, modifikaciju i brisanje podataka
	Slide 2: Kreiranje klase
	Slide 3: Kreiranje servisa za komunikaciju sa Api -jem
	Slide 4: Komponenta
	Slide 5: Slanje podataka na sever
	Slide 6: Slanje podataka na sever
	Slide 7: POST metoda servisa za komunikaciju sa Web Api aplikacijom
	Slide 8: Komponenta – unos podataka
	Slide 9: Komponenta- interfejs za unos
	Slide 10: Interfejs za unos podataka
	Slide 11: DELETE metoda – brisanje podataka
	Slide 12: DELETE metoda servisa za komunikaciju sa Web Api aplikacijom
	Slide 13: Komponenta – brisanje podataka
	Slide 14: Komponenta – interfejs za brisanje
	Slide 15: Interfejs za brisanje podataka
	Slide 16: PUT metoda servisa za komunikaciju sa Web Api aplikacijom
	Slide 17: Komponenta -promena podataka
	Slide 18: Komponenta – šablon za promenu
	Slide 19: Interfejs za promenu podataka
	Slide 20: Primer web api -aplikacije
	Slide 21: Prikaz kategorija
	Slide 22: Prikaz proizvoda
	Slide 23: Bootstrap aplikacije
	Slide 24: Klasa Proizvod
	Slide 25: Klasa MagacinService
	Slide 26: GET metoda servisa – preuzimanje podataka
	Slide 27: Klasa komponente Proizvodi
	Slide 28: Metoda komponente
	Slide 29: Šablon komponente proizvodi
	Slide 30: Prikaz podataka
	Slide 31: HTML forme
	Slide 32: Element <form>
	Slide 33: Kontrole forme - element <input>
	Slide 34: Atributi <input> elementa
	Slide 35: Text polje
	Slide 36: Element <label>
	Slide 37: Element <fieldset>
	Slide 38: Element <button>
	Slide 39: Primer HTML forme sa upotrebom elementa fieldset
	Slide 40: Primer HTML forme sa upotrebom elementa fieldset
	Slide 41: Forma bez upotrebe fieldset elementa
	Slide 42: Forma bez upotrebe fieldset elementa
	Slide 43: Element <textarea>
	Slide 44: Prikaz tekst oblasti
	Slide 45: Element <select>
	Slide 46: Element <select>
	Slide 47: Element <select> sa atributom size
	Slide 48: Element <select> sa atributom size
	Slide 49: Kontrole checkbox i radio button
	Slide 50: HTML checkbox
	Slide 51: Prikaz checkbox kontrola
	Slide 52: Grupa radiobutton kontrola, svojstvo name
	Slide 53: Prikaz radiobutton kontrola
	Slide 54: Angular forme
	Slide 55: Forma
	Slide 56: FormControl klasa
	Slide 57: FormGroup klasa
	Slide 58: Template Driven Forms (TDF)
	Slide 59: Komponenta
	Slide 60: Šablon komponente
	Slide 61: Direktive ngForm, ngModel, događaj ngSubmit
	Slide 62: Direktive ngForm, ngModel, događaj ngSubmit
	Slide 63: Pristup kontrolama i vrednostima u TDF
	Slide 64: Klasa komponente
	Slide 65: Konzola nakon slanja forme
	Slide 66: Model klasa forme
	Slide 67: Klasa komponente
	Slide 68: Povezivanje sa modelom
	Slide 69: Korisnički interfejs
	Slide 70: Načini rada sa Template-driven formama
	Slide 71: Validacija u TDF
	Slide 72: Validacija u TDF
	Slide 73: Prikaz validacionih grešaka
	Slide 74: Svojstvo valid forme
	Slide 75: Zabrana slanja nevalidnih podataka
	Slide 76: Primer upotrebe TDF formi
	Slide 77: Primer upotrebe TDF formi
	Slide 78: Metoda onSubmit()
	Slide 79: Podešavanje tekst polja
	Slide 80: Podešavanje radio inputa
	Slide 81: Select kontrola
	Slide 82: Podešavanje button elemenata
	Slide 83: Korisnički interfejs
	Slide 84: Pitanje 1
	Slide 85: Pitanje 2
	Slide 86: Pitanje 3
	Slide 87: Pitanje 4
	Slide 88: Pitanje 5
	Slide 89: Pitanje 6
	Slide 90: Pitanje 7

