Zivotni ciklus komponente

Konstruktor komponente

* Svaka komponenta ima zivotni ciklus i prolazi kroz razliCite faze od
inicijalizacije do destrukcije

* Posto je komponenta TypeScript klasa, svaka komponenta ima
konstruktor

* Konstruktor komponente se prvi poziva pre poziva bilo kog dogadaja
iz zivotnog ciklusa komponente

* Kod Angular aplikacija konstruktor se uglavhom koristi za ubacivanje
zavisnosti (dependency injection)

Zivotni ciklus komponente - metode

* ngOnChanges metoda se poziva u child komponenti kada parent komponenta izmeni
vrednost ulaznog svojstva oznacenog dekoratorom @Input()

* Ako komponenta nema ulazna svojstva (@Input), metoda ngOnChanges se ne poziva

* ngOnlnit metoda se poziva kada se komponenta inicijalizuje prvi put
* Poziva se posle konstruktora i prvog poziva metode ngOnChanges (ako postoji)
e U trenutku poziva ove metode svojstva komponente su inicijalizovana
* Ucitavanje podataka neophodnih za prikaz komponente najéesce se obavlja unutar ove metode

* ngDoCheck metoda se poziva prilikom svakog prolaska Angular mehanizma za detekciju
promena

» Koristi se za rucnu detekciju i pracenje promena koje Angular automatski ne detektuje

* ngOnDestroy metoda se poziva neposredno pre nego sto Angular unisti instancu
komponente

Interfejs Onlnit

import { Component, OnInit } from '@angular/core';
@Component ({

selector: 'app-root',

standalone: true,

imports: [],

templateUrl: './app.component.html’,

styleUrl: './app.component.css'

1)
export class App implements OnInit {

ngOnInit(): void {
throw new Error('Method not implemented.');

}

NngONInit

import { Component, OnInit } from '@angular/core’;

@Component ({
selector: 'app-root',
templateUrl: './on-init.component.html’,
styleUrls: ['./on-init.component.css"']

1)

export class App implements OnInit {
title = 'komunikacija';

constructor() {
console.log('Konstruktor komponente');

}

ngOnInit(): void {
console.log("Metoda ngOnInit");
}

}

NgONInit

i\ 1t2025

<

C

* +

[] @ localhost:4200 st

R [o Elements Console Sources MNetwork
M@ tpr @ ¥ Filter

Konstruktor komponente

Metoda mgOnInit

Angular is running in development mode.

> |

U A &

Performance Memory 27 {3

Default levels «

— O

O0G&

@ X

Mo Issues 2 hidden
app.ts:14
app.ts:18

debug_node.mjs:18367

Parent komponenta

@Component ({
selector: 'app-parent-component’,
imports: [],
templateUrl: './parent-component.html’
styleUrl: './parent-component.css',

})

export class ParentComponent {
X = 0;

promenaParent(): void {
this.x++;

}

ng g ¢ parentComponent

Child komponenta

ng g ¢ childComponent

export class ChildComponent {
@Input() parentData: number = 0;
constructor() {}

ngoOnChanges(changes: SimpleChanges): void {
console.log('ngOnChanges', changes);

}

ngOnInit(): void {
console.log('ngOnInit");
}

promenaChild(): void {
this.parentData--;

}
}

Sablon child komponente

<button
class="btn btn-primary btn-block"
(click)="promenaChild()">
Promena iz child komponente
</button>

<div class="mt-2">
{{ parentData }}
</div>

Sablon parent komponente

<div class="row">
<div class="col-8">
<button
class="btn btn-primary btn-block"
(click)="promenaParent()">
Promena iz parent komponente
</button>
</div>
</div>

<div class="row mt-3">
<div class="col-8">
<app-child-component [parentData]="x"></app-child-component>
</div>
</div>

10

Modifikacija ulaznog svojstva posredstvom parent
komponente

i\ 1t2025 x + — O X
< C [l @ localhost:4200 las A B O &% 6 =
Promena iz parent ik [0 Elements cConsole Sources Network >» @ @ X
kDmpDnente M @ topv & Y Filter Default levels ¥ Mo lssues
. . ngdnInit child-component.ts:19 A
Promena iz child , o ,
Angular is running in development mode. debug_node.mjs:18267
kDﬂ1pDnEﬂtE ngonChanges child-component.ts:15
* {parentData: SimpleChange} 4
1 b parentData: SimpleChange {previousValue: @, currentValue: 1,

* [[Prototype]]: Object
b constructor: F Object()
b hasOwnProperty: F hasOwnProperty()
b isPrototype0f: f isPrototypelf()
b propertylsEnumerable: F propertyIsEnumerable()
b tolLocaleString: f telocaleString()
b toString: F () |
b valuedf: F valuelf()
b defineGetter : f defineGetter () v

Angular cevi (pipes)

* Omogucavaju transformaciju podataka pre njihovog prikaza u pogledu
e Potrebno je importovati CommonModule
* Pipe karakter se oznacava sa |

export class CeviComponent {

naslov = "Angular cevi";
datum:Date = new Date();
a:number = 5.678;
p:number = 0.257;

}

Rad sa stringovima

<div class="row">

<h3>{{ naslov }}</h3>

<h3>{{ naslov | lowercase }}</h3>
<h3>{{ naslov | uppercase }}</h3>
<h3>{{ naslov | titlecase }}</h3>
<h2>{{ naslov | slice:3 }}</h2>
<h2>{{ naslov | slice:3:6 }}</h2>
</div>

Angular cevi

angular cevi
ANGULAR CEVI
Angular Cevi

ular cevi
ula

13

Rad sa datumom

<p>shortDate: {{ datum | date:'shortDate' }}</p>
<p>shortTime: {{ datum | date:'shortTime' }}</p>

<p>dd.MM.yyyy: {{ datum | date:'dd.MM.yyyy' }}</p>
<p>d.M.yyyy: {{ datum | date:'d.M.yyyy' }}</p>

<p>HH:mm:ss: {{ datum | date:'HH:mm:ss' }}</p>

shortDate: 12/9/25
shortTime: 10:21 AM
dd.MM.yyyy: 09.12.2025
d.M.yyyy: 9.12.2025

HH:mm:ss: 10:21:37

14

Rad sa brojevima

<p>{{ a | number:'1.2-3"' }}</p>
<p>{{ a | number:'3.4-5"' }}</p>
<p>{{ a | number:'3.1-2"' }}</p>

5.678

005.6780

005.68

15

Rad sa procentima

<div>{{ p | percent }}</div> 26%
<div>{{ p | percent:'2.3-5" }}</div> 25.700%

Servis|

Servisl

 Komponenta je fokusirana na interaktivnu logiku sa korisnikom
* Preuzimanje podataka sa servera ne treba da se obavlja u komponenti

* Servis je klasa koja komunicira sa serverom i obezbeduje podatke
aplikaciji

* Servis je klasa sa uskom i jasno definisanom funkcionalnoscu

 Komponenta koristi servis putem mehanizma koji se naziva
dependency injection (Dl)

 Pomodu anotacije @Injectable() definiSe se da je servis dostupan za
dependency injection

Dependency Injection u Angularu

* Angular poseduje sopstveni DI framework

e Zavisnosti su servisi ili objekti koji su potrebni nekoj klasi da bi
izvrSavala svoju funkcionalnost

* Dependency Injection (Dl) je dizajnerski obrazac u kome klasa dobija
svoje zavisnosti iz spoljnog izvora, umesto da ih sama instancira

* Dobavljanje zavisnosti od DI framework-a vrsi se posredstvom
konstruktora zavisne klase

Kreiranje klase

ng g class osoba

export class Osoba {
constructor(public id: number, public ime: string, public prezime: string, public starost: number) {

}

Fajl podaci.ts unutar app foldera

import { Osoba } from './osoba';

export const OSOBE: Osobal[] = [
new Osoba(l, 'Marko', 'Markovic', 25),
new Osoba(2, 'Petar', 'Petrovic', 34),
new Osoba(3, 'Jovan', 'Jovanovic', 27),
new Osoba(4, 'Milan', 'Mirkovic', 22)

15

]]]]

Kreiranje servisa

ng g service osbaService

import { Injectable } from
'@angular/core’;

@Injectable({
providedIn: 'root’,

1)

export class OsbaService {

}

Singleton servis je servis za koji postoji jedna instanca u aplikaciji.
Opcija providediIn: 'root' obezbeduje da servis bude dostupan na nivou cele aplikacije i da postoji
jedinstvena instanca koja se deli izmedu svih komponenti i drugih servisa.

Servis OsobaService

import { Injectable } from '@angular/core';
import { OSOBE } from './podaci';

@Injectable({
providedIn: 'root’,

})

export class OsobaService {
constructor() {

}
vratiOsobe(){

return OSOBE;

}
}

Jbacivanje objekta servisa u konstruktor
Komponente

ng g ¢ osobe-component

export class OsobeComponent implements OnInit {
title = 'Servisi’;
osobe: Osobal[] =[];

constructor(private oServis: OsobaService) { }

ngOnInit(): void {
this.osobe = this.oServis.vratiOsobe();

}

}

Sablon komponente

<div class="row">
<div class="col-6">

@for (osoba of osobe; track osoba) {
<1i>
{{ osoba.ime }} {{ osoba.prezime}}
</1li>
}

</div>
</div>

R AN

C | @© localhost:4200

* Marko Markovic
® Petar Petrovic
* Jovan Jovanovic
s Milan Mirkovic

25

Observables

* Observable je objekat koji predstavlja tok podataka i moze emitovati niz
vrednosti tokom vremena

 Observable moze emitovati vrednosti asinhrono

* Vrednosti koje emituje Observable se Salju observerima koji pratetaj
Observable

* Kada se Observer pretplati(subscribe) na Observable, on postaje "slusalac"
koji reaguje na:
* emitovanu vrednost
e gresku
* obavestenje o zavrSetku toka podataka

Observer

* Observer je objekat koji definiSe tri moguce metode: next, error i
complete

* Metoda next se poziva kada Observable emituje novu vrednost
* Ova metoda prima vrednost koja je upravo emitovana

* Metoda error se poziva kada Observable emituje gresku
* Ova metoda prima objekat koji predstavlja gresku

* Metoda complete se poziva kada Observable zavrsi emitovanje
vrednosti

Observables

* Web server obic¢no Salje podatke asinhrono i ti podaci se mogu modelovati kao
Observable tok (stream)

* Observable predstavlja sekvencu vrednosti koje pristizu asinhrono tokom
vremena

* Observable moze imati viSe pretplatnika i svi pretplatnici bivaju obavesteni kada
se stanje Observable-a promeni

* Angular koristi biblioteku RxJS (Reactive Extensions for JavaScript) za rad sa
Observable-ima

 HTTP modul u Angularu koristi Observable-e prilikom obrade AJAX zahteva i
odgovora

Primer Observable i pretplata

export class ObservableComponent {
mojObservable = of(1, 2, 3);

observer = {
next: (x: number) => console.log('Observer dobija vrednost: ' + x),
error: (err: string) => console.error('Observer je dobio gresku: ' + err),
complete: () => console.log('Observer je dobio obaveStenje o zavrsSetku')

}s

pretplata() {
this.mojObservable.subscribe(this.observer);

}
}

29

Sablon komponente

<button (click)="pretplata()">0Observable</button>

v 1Y 02s x -+

& @ localhost:4200

— (|

Qv = &

X

Q|

Observable W od O Ij-tl /> @Con&ule v = 9 + ":’}:’ X

Default levels » @ 22 2 hidden EE’B

B @) topv B = Filter

Observer dobija vrednost: 1
Observer dobija vrednost: 2
Observer dobija vrednost: 2

Observer je dobio obaveStenje o zavrietku

Console Issues |

observable-component.ts:

14

observable-component.ts:

14

observable-component.ts:

14

observable-component.ts:

1g

‘S

ik

q

30

Modifikacija servisa

@Injectable({
providedIn: 'root’,

})

export class OsobaService {
constructor() {

}
// vratiOsobe(){

// return OSOBE;

/] }

vratiOsobe(): Observable<Osoba[]> {
return of(0OSOBE);

}
¥

31

Pretplata na observable — prosledivanje
metode

export class OsobeComponent implements OnInit {
title = 'Servisi’';
osobe: Osoba[] =[];

constructor(private oServis: OsobaService) { }

ngOnInit(): void {
//this.osobe = this.oServis.vratiOsobe();
this.oServis.vratiOsobe()
.subscribe(os => this.osobe = 0s);

Komunikacija sa udaljenim
serverom

Angular HttpClient servis

e HttpClient je servis koji se koristi za slanje HTTP zahteva i prijem odgovora
 Omogucava asinhronu komunikaciju sa udaljenim serverom
* Nalazi se u paketu @angular/common/http

* U standalone Angular aplikacijama koristi se funkcija provideHttpClient() za
registrovanje HttpClient servisa u aplikaciji

* Funkcija provideHttpClient() se poziva prilikom pokretanja(bootstrapanje)
aplikacije

* Bootstrapanje aplikacije je proces pokretanja i inicijalizacije Angular
aplikacije i vrsi se u fajlu main.ts pomocu funkcije bootstrapApplication()

Obezbedivanje HttpClient servisa u angular
aplikaciji

Fajl main.ts

import { bootstrapApplication } from '@angular/platform-browser’;
import { App } from './app/app';
import { provideHttpClient } from '@angular/common/http';

// bootstrapApplication(App, appConfig)
// .catch((err) => console.error(err));

bootstrapApplication(App, {
providers: [
provideHttpClient()

]
})s

35

Servis HttpClient

e Klasa HttpClient je tzv. injectable klasa i ubacuje se u servis putem
njegovog konstruktora

 Klasa HttpClient sadrzi metode kojima se Salju HTTP zahtevi ka
serveru

* Podatke za aplikaciju najcesce obezbeduje Web API

* Metoda get() Salje GET zahtev (Citanje podataka)

* Metoda post() salje POST zahtev (kreiranje novih podataka)

* Metoda put() salje PUT zahtev (izmena postojecih podataka)

* Metoda delete() Salje DELETE zahtev (brisanje postojecih podataka)

Angular In-Memory Web AP]

* Ovaj modul omogucava simulaciju REST API back-enda u memoriji,
prvenstveno za razvoj i testiranje aplikacija bez pravog servera

npm i angular-in-memory-web-api

Kreiranje baze podataka u memoriji

ng g class baza

import { InMemoryDbService } from 'angular-in-memory-web-api’;
import { Osoba } from './osoba';

export class Baza implements InMemoryDbService {
createDb() {
const osobe: Osoba[] = |
new Osoba(l, 'Marko', 'Markovic', 25),
new Osoba(2, 'Petar', 'Petrovic', 34),
new Osoba(3, 'Jovan', 'Jovanovic', 27),
new Osoba(4, 'Milan', 'Mirkovic', 22)

15

return {osobe};

}
}

'api/osobe' adresa web api -ja

38

Konfigurisanje memorijskog web apija

bootstrapApplication(App, {
providers: [
provideHttpClient(),
importProvidersFrom(InMemoryWebApiModule.forRoot(Baza))

]
})s

Kreiranje servisa za komunikaciju sa api -jem

import { Injectable } from '@angular/core';

import { throwError } from 'rxjs';

import { Osoba } from './osoba';

import { HttpClient, HttpErrorResponse } from '@angular/common/http’;

@Injectable({
providedIn: 'root’,

1)

export class OsobaService {

private apiUrl = 'api/osobe’;

constructor(private http: HttpClient) {}

private errorHandler(error: HttpErrorResponse) {
return throwError(() => error);

}
}

40

Generisanje GET zahteva ka Web serveru

« Komponenta poziva GET metodu Angular servisa

* Servis koristi HttpClient za slanje HTTP zahteva

* Kreira se HTTP GET zahtev ka Web API ruti

* Server obraduje zahtev i vraca odgovor

* Odgovor sadrzi podatke u JSON formatu

* Angular prima JSON i mapira ga u odgovarajuce objekte
* Rezultat se prosleduje komponenti kroz Observable

Slanje podataka GET zahtevom

* GET metoda ne salje podatke u telu zahteva
* Podaci se prosleduju iskljucivo kroz URL adresu
* GET metoda se koristi za preuzimanje(Citanje) podataka sa servera

* Nacini prosledivanja podataka:
* Putanja (path parametri) predstavlja deo URL adrese koji se mapira na

odgovarajucu serversku klasu (kontroler) i njenu metodu

* U primeru GET /osobe/5, deo /osobe oznacava serverski kontroler zaduZen za rad sa
osobama, dok broj 5 predstavlja ID resursa koji se prosleduje metodi tog kontrolera

* Query parametri se koriste za slanje dodatnih kriterijuma
* Primer: GET /osobe?grad=Beograd&starost=25

GET metode servisa za komunikaciju sa Web Api
aplikacijom

vratiOsobe(): Observable<Osoba[]> {
return this.http.get<0Osoba[]>(this.apilrl)
.pipe(catchError(this.errorHandler));

}

vratiOsobu(id: number): Observable<Osoba> {
const url = " ${this.apiUrl}/${id} ;
return this.http.get<0Osoba>(url).pipe(
catchError(this.errorHandler)
)
}

pipe() funkcija prima operatore (funkcije) koje se ulancavaju nad Observable-om
catchError() je operator koji hvata greske i prosleduje ih dalje preko errorHandler metode

Obrada gresaka u http komunikaciji

private errorHandler(error: HttpErrorResponse) {
// Logovanje greSke (za developere)
console.error('DoSlo je do greske:', error);

let errorMessage = 'Nepoznata greska';

if (error.error instanceof ErrorEvent) {
// GresSka na klijentskoj strani

errorMessage = Klijentska greska: ${error.error.message} ;
} else {
// GresSka na serverskoj strani
errorMessage = “Serverska greska (${error.status}): ${error.message} ;

}

// Vracanje greSke kao Observable
return throwError(() => new Error(errorMessage));

throwError funkcija iz RxJS biblioteke kreira Observable koji ée emitovati gresku
Anonimna funkcija vraca samu gresku kao vrednost koja ¢e biti emitovana kroz Observable.

Komponenta — ubacivanje objekta servisa

export class ListaOsobaComponent {
osobe: Osobal[] = [];

odabranaOsoba: Osoba = new Osoba(@, "', '', 0);
idOsobe = 0;

imeOsobe = "";

prezimeOsobe = ;

starostOsobe = 0;

resetujPolja(): void {
this.imeOsobe = '’
this.prezimeOsobe
this.starostOsobe

}

J

9;

I e

constructor(private oServis: OsobaService) {

}

Metode komponente: prikaziOsobe() i
orikaziOsobu()

prikaziOsobe(): void {
this.oServis.vratiOsobe()
.subscribe({
next: os => this.osobe = os,

error: grr => console.error('Greska: "' + grr)
})s
}
prikaziOsobu(): void {
this.oServis.vratiOsobu(this.idOsobe)
.subscribe({
next: os => this.odabranaOsoba = os,
error: grr => {
console.log('Greska: ' + grr);
this.odabranaOsoba = new Osoba(@, "', '', 9);
}
})s
}

Metode komponente za prikaz podataka

* Metoda prikaziOsobe() poziva servis i Salje HTTP GET zahtev za
preuzimanje liste osoba

 Komponenta se pretplacuje (subscribe) na Observable koji vraca
servis

* Nakon uspesnog odgovora, lista osoba se smesta u niz osobe i
prikazuje u Sablonu

* Metoda prikaziOsobu() Salje HTTP GET zahtev sa ID-jem osobe

e Sa servera se preuzima jedna osoba i smesta u objekat
odabranaOsoba

* U slucaju greske, greska se obraduje u error delu subscribe metode

Metoda ngOnlnit()

ngOnInit(): void {
this.prikaziOsobe();
}

Sablon komponente za prikaz podataka

<div class="row">
<div class="col-6">

@for (osoba of osobe; track osoba.id) {
<1li>
{{ osoba.id }} {{ osoba.ime }} {{ osoba.prezime }}
</1li>
}

</div>
@if (odabranaOsoba.id !== 0) {
<div class="col-6">
<p>
{{ odabranaOsoba.ime }} {{ odabranaOsoba.prezime }}
</p>
</div>
}
</div>

Sablon komponente za unos podataka

<div class="row">
<div class="col-6">
<div class="form-group" >
<input type="text" [(ngModel)]="idOsobe" placeholder="Unesi ID osobe"
class="form-control”>

<button class="btn btn-secondary
(click)="prikaziOsobu()">Prikazi</button>

</div>
</div>
</div>

50

Korisnicki interfejs

v T o025 X =+

G © localhost:4200
[]
[]
[]
[]

2

1 Marko Markovic Petar Petrovic
2 Petar Petrovic

3 Jovan Jovanovic
4 Milan Mirkovic

51

Pitanje 1

Sta se prvo izvr§ava prilikom kreiranja Angular komponente?

a. konstruktor
b. ngOnlnit
c. ngDoCheck

Odgovor: a

Pitanje 2

Metoda ngOnChanges se poziva:

a.
b.

u parent komponenti kada se promene njeni lokalni property
u child komponenti kada parent komponenta modifikuje ulazni property u

child komponenti
u child komponenti kada ona sama promeni vrednost svog ulaznog

property-ja

Odgovor: b

Pitanje 3

Angular cevi (pipes) se koriste za:

a. komunikaciju sa udaljenim serverom
b. razmenu podataka izmedu komponenti
c. transformaciju podataka pre njihovog prikaza u pogledu

Odgovor: c

Pitanje 4

Angular klasa koja je zaduzena za komunikaciju sa serverom i obezbedivanje
podataka aplikaciji naziva se:

a. servis
b. pipe
c. komponenta

Odgovor: a

Pitanje 5

Angular servis se oznacava dekoratorom:

a. @Service
b. @HttpService
C. @Injectable

Odgovor: c

Pitanje 6

Ubacivanje objekta servisa u klasu komponente vrsi se :

a. u metodi ngOnlInit komponente
b. u konstruktoru komponente
c. u metodi ngDoCheck komponente

Odgovor: b

Pitanje /

Klasa koja omogucava komunikaciju sa udaljenim Web API-jem naziva se:

a. HttpClient
b. HttpModule
c. HttpConnect

Odgovor: a

Pitanje 8

Da bi se koristila klasa HttpClient za komunikaciju sa udaljenim serverom u
standalone aplikaciji u Angular 20, potrebno je:

a. koristiti funkciju provideHttpClient() pri pokretanju aplikacije (u funkciji
bootstrapApplication)
. Importovati HttpClientModule u svakom servisu koji koristi HttpClient
c. Imortovati RemoteModule u svakom servisu koji koristi HttpClient

Odgovor: a

	Slide 1: Životni ciklus komponente
	Slide 2: Konstruktor komponente
	Slide 3: Životni ciklus komponente - metode
	Slide 4: Interfejs OnInit
	Slide 5: ngOnInit
	Slide 6: ngOnInit
	Slide 7: Parent komponenta
	Slide 8: Child komponenta
	Slide 9: Šablon child komponente
	Slide 10: Šablon parent komponente
	Slide 11: Modifikacija ulaznog svojstva posredstvom parent komponente
	Slide 12: Angular cevi (pipes)
	Slide 13: Rad sa stringovima
	Slide 14: Rad sa datumom
	Slide 15: Rad sa brojevima
	Slide 16: Rad sa procentima
	Slide 17: Servisi
	Slide 18: Servisi
	Slide 19: Dependency Injection u Angularu
	Slide 20: Kreiranje klase
	Slide 21: Fajl podaci.ts unutar app foldera
	Slide 22: Kreiranje servisa
	Slide 23: Servis OsobaService
	Slide 24: Ubacivanje objekta servisa u konstruktor komponente
	Slide 25: Šablon komponente
	Slide 26: Observables
	Slide 27: Observer
	Slide 28: Observables
	Slide 29: Primer Observable i pretplata
	Slide 30: Šablon komponente
	Slide 31: Modifikacija servisa
	Slide 32: Pretplata na observable – prosleđivanje metode
	Slide 33: Komunikacija sa udaljenim serverom
	Slide 34: Angular HttpClient servis
	Slide 35: Obezbeđivanje HttpClient servisa u angular aplikaciji
	Slide 36: Servis HttpClient
	Slide 37: Angular In-Memory Web API
	Slide 38: Kreiranje baze podataka u memoriji
	Slide 39: Konfigurisanje memorijskog web apija
	Slide 40: Kreiranje servisa za komunikaciju sa api -jem
	Slide 41: Generisanje GET zahteva ka Web serveru
	Slide 42: Slanje podataka GET zahtevom
	Slide 43: GET metode servisa za komunikaciju sa Web Api aplikacijom
	Slide 44: Obrada grešaka u http komunikaciji
	Slide 45: Komponenta – ubacivanje objekta servisa
	Slide 46: Metode komponente: prikaziOsobe() i prikaziOsobu()
	Slide 47: Metode komponente za prikaz podataka
	Slide 48: Metoda ngOnInit()
	Slide 49: Šablon komponente za prikaz podataka
	Slide 50: Šablon komponente za unos podataka
	Slide 51: Korisnički interfejs
	Slide 52: Pitanje 1
	Slide 53: Pitanje 2
	Slide 54: Pitanje 3
	Slide 55: Pitanje 4
	Slide 56: Pitanje 5
	Slide 57: Pitanje 6
	Slide 58: Pitanje 7
	Slide 59: Pitanje 8

