
Životni ciklus komponente

Konstruktor komponente

• Svaka komponenta ima životni ciklus i prolazi kroz različite faze od
inicijalizacije do destrukcije

• Pošto je komponenta TypeScript klasa, svaka komponenta ima
konstruktor

• Konstruktor komponente se prvi poziva pre poziva bilo kog događaja
iz životnog ciklusa komponente

• Kod Angular aplikacija konstruktor se uglavnom koristi za ubacivanje
zavisnosti (dependency injection)

2

Životni ciklus komponente - metode

• ngOnChanges metoda se poziva u child komponenti kada parent komponenta izmeni
vrednost ulaznog svojstva označenog dekoratorom @Input()

• Ako komponenta nema ulazna svojstva (@Input), metoda ngOnChanges se ne poziva

• ngOnInit metoda se poziva kada se komponenta inicijalizuje prvi put

• Poziva se posle konstruktora i prvog poziva metode ngOnChanges (ako postoji)

• U trenutku poziva ove metode svojstva komponente su inicijalizovana

• Učitavanje podataka neophodnih za prikaz komponente najčešće se obavlja unutar ove metode

• ngDoCheck metoda se poziva prilikom svakog prolaska Angular mehanizma za detekciju
promena

• Koristi se za ručnu detekciju i praćenje promena koje Angular automatski ne detektuje

• ngOnDestroy metoda se poziva neposredno pre nego što Angular uništi instancu
komponente

3

Interfejs OnInit

4

import { Component, OnInit } from '@angular/core';
@Component({
selector: 'app-root',
standalone: true,
imports: [],
templateUrl: './app.component.html',
styleUrl: './app.component.css'

})
export class App implements OnInit {

ngOnInit(): void {
throw new Error('Method not implemented.');

}

}

ngOnInit

5

import { Component, OnInit } from '@angular/core';

@Component({
selector: 'app-root',
templateUrl: './on-init.component.html',
styleUrls: ['./on-init.component.css']

})
export class App implements OnInit {

title = 'komunikacija';

constructor() {
console.log('Konstruktor komponente');

}

ngOnInit(): void {
console.log("Metoda ngOnInit");

}

}

ngOnInit

6

Parent komponenta

7

@Component({
selector: 'app-parent-component',
imports: [],
templateUrl: './parent-component.html',
styleUrl: './parent-component.css',

})
export class ParentComponent {
x = 0;

promenaParent(): void {
this.x++;

}

}

ng g c parentComponent

Child komponenta

8

export class ChildComponent {

@Input() parentData: number = 0;

constructor() {}

ngOnChanges(changes: SimpleChanges): void {
console.log('ngOnChanges', changes);

}

ngOnInit(): void {
console.log('ngOnInit');

}

promenaChild(): void {
this.parentData--;

}
}

ng g c childComponent

Šablon child komponente

9

<button
class="btn btn-primary btn-block"
(click)="promenaChild()">
Promena iz child komponente

</button>

<div class="mt-2">
{{ parentData }}

</div>

Šablon parent komponente

10

<div class="row">
<div class="col-8">
<button
class="btn btn-primary btn-block"
(click)="promenaParent()">
Promena iz parent komponente

</button>
</div>

</div>

<div class="row mt-3">
<div class="col-8">
<app-child-component [parentData]="x"></app-child-component>

</div>
</div>

Modifikacija ulaznog svojstva posredstvom parent
komponente

11

Angular cevi (pipes)

• Omogućavaju transformaciju podataka pre njihovog prikaza u pogledu

• Potrebno je importovati CommonModule

• Pipe karakter se označava sa |

12

export class CeviComponent {
naslov = "Angular cevi";
datum:Date = new Date();
a:number = 5.678;
p:number = 0.257;

}

Rad sa stringovima

13

<div class="row">
<h3>{{ naslov }}</h3>
<h3>{{ naslov | lowercase }}</h3>
<h3>{{ naslov | uppercase }}</h3>
<h3>{{ naslov | titlecase }}</h3>
<h2>{{ naslov | slice:3 }}</h2>
<h2>{{ naslov | slice:3:6 }}</h2>
</div>

Rad sa datumom

14

<p>shortDate: {{ datum | date:'shortDate' }}</p>
<p>shortTime: {{ datum | date:'shortTime' }}</p>

<p>dd.MM.yyyy: {{ datum | date:'dd.MM.yyyy' }}</p>
<p>d.M.yyyy: {{ datum | date:'d.M.yyyy' }}</p>

<p>HH:mm:ss: {{ datum | date:'HH:mm:ss' }}</p>

Rad sa brojevima

15

<p>{{ a | number:'1.2-3' }}</p>
<p>{{ a | number:'3.4-5' }}</p>
<p>{{ a | number:'3.1-2' }}</p>

Rad sa procentima

16

<div>{{ p | percent }}</div>
<div>{{ p | percent:'2.3-5' }}</div>

Servisi

Servisi

• Komponenta je fokusirana na interaktivnu logiku sa korisnikom

• Preuzimanje podataka sa servera ne treba da se obavlja u komponenti

• Servis je klasa koja komunicira sa serverom i obezbeđuje podatke
aplikaciji

• Servis je klasa sa uskom i jasno definisanom funkcionalnošću

• Komponenta koristi servis putem mehanizma koji se naziva
dependency injection (DI)

• Pomoću anotacije @Injectable() definiše se da je servis dostupan za
dependency injection

18

Dependency Injection u Angularu

• Angular poseduje sopstveni DI framework

• Zavisnosti su servisi ili objekti koji su potrebni nekoj klasi da bi
izvršavala svoju funkcionalnost

• Dependency Injection (DI) je dizajnerski obrazac u kome klasa dobija
svoje zavisnosti iz spoljnog izvora, umesto da ih sama instancira

• Dobavljanje zavisnosti od DI framework-a vrši se posredstvom
konstruktora zavisne klase

19

Kreiranje klase

20

ng g class osoba

export class Osoba {
 constructor(public id: number, public ime: string, public prezime: string, public starost: number) {
 }
}

Fajl podaci.ts unutar app foldera

21

import { Osoba } from './osoba';

export const OSOBE: Osoba[] = [
new Osoba(1, 'Marko', 'Markovic', 25),
new Osoba(2, 'Petar', 'Petrovic', 34),
new Osoba(3, 'Jovan', 'Jovanovic', 27),
new Osoba(4, 'Milan', 'Mirkovic', 22)

];

Kreiranje servisa

22

ng g service osbaService

import { Injectable } from
'@angular/core';

@Injectable({
providedIn: 'root',

})
export class OsbaService {

}

Singleton servis je servis za koji postoji jedna instanca u aplikaciji.
Opcija providedIn: 'root' obezbeđuje da servis bude dostupan na nivou cele aplikacije i da postoji
jedinstvena instanca koja se deli između svih komponenti i drugih servisa.

Servis OsobaService

23

import { Injectable } from '@angular/core';
import { OSOBE } from './podaci';

@Injectable({
providedIn: 'root',

})
export class OsobaService {
constructor() {

}
vratiOsobe(){
return OSOBE;

}
}

Ubacivanje objekta servisa u konstruktor
komponente

24

export class OsobeComponent implements OnInit {
 title = 'Servisi';
osobe: Osoba[] =[];

constructor(private oServis: OsobaService) { }

ngOnInit(): void {
this.osobe = this.oServis.vratiOsobe();

}
}

ng g c osobe-component

Šablon komponente

25

<div class="row">
<div class="col-6">

@for (osoba of osobe; track osoba) {

{{ osoba.ime }} {{ osoba.prezime}}

}

</div>

</div>

Observables

• Observable je objekat koji predstavlja tok podataka i može emitovati niz
vrednosti tokom vremena

• Observable može emitovati vrednosti asinhrono

• Vrednosti koje emituje Observable se šalju observerima koji pratetaj
Observable

• Kada se Observer pretplati(subscribe) na Observable, on postaje "slušalac"
koji reaguje na:
• emitovanu vrednost

• grešku

• obaveštenje o završetku toka podataka

26

Observer

• Observer je objekat koji definiše tri moguće metode: next, error i
complete

• Metoda next se poziva kada Observable emituje novu vrednost
• Ova metoda prima vrednost koja je upravo emitovana

• Metoda error se poziva kada Observable emituje grešku
• Ova metoda prima objekat koji predstavlja grešku

• Metoda complete se poziva kada Observable završi emitovanje
vrednosti

27

Observables

• Web server obično šalje podatke asinhrono i ti podaci se mogu modelovati kao
Observable tok (stream)

• Observable predstavlja sekvencu vrednosti koje pristižu asinhrono tokom
vremena

• Observable može imati više pretplatnika i svi pretplatnici bivaju obavešteni kada
se stanje Observable-a promeni

• Angular koristi biblioteku RxJS (Reactive Extensions for JavaScript) za rad sa
Observable-ima

• HTTP modul u Angularu koristi Observable-e prilikom obrade AJAX zahteva i
odgovora

28

Primer Observable i pretplata

29

export class ObservableComponent {
mojObservable = of(1, 2, 3);

observer = {
next: (x: number) => console.log('Observer dobija vrednost: ' + x),
error: (err: string) => console.error('Observer je dobio grešku: ' + err),
complete: () => console.log('Observer je dobio obaveštenje o završetku')

};

pretplata() {
this.mojObservable.subscribe(this.observer);

}
}

Šablon komponente

30

<button (click)="pretplata()">Observable</button>

Modifikacija servisa

31

@Injectable({
providedIn: 'root',

})
export class OsobaService {
constructor() {

}
// vratiOsobe(){
// return OSOBE;
// }
vratiOsobe(): Observable<Osoba[]> {
return of(OSOBE);

}
}

Pretplata na observable – prosleđivanje
metode

32

export class OsobeComponent implements OnInit {
title = 'Servisi';
osobe: Osoba[] =[];

constructor(private oServis: OsobaService) { }

ngOnInit(): void {
//this.osobe = this.oServis.vratiOsobe();
this.oServis.vratiOsobe()

.subscribe(os => this.osobe = os);

}
}

Komunikacija sa udaljenim
serverom

Angular HttpClient servis

• HttpClient je servis koji se koristi za slanje HTTP zahteva i prijem odgovora

• Omogućava asinhronu komunikaciju sa udaljenim serverom

• Nalazi se u paketu @angular/common/http

• U standalone Angular aplikacijama koristi se funkcija provideHttpClient() za
registrovanje HttpClient servisa u aplikaciji

• Funkcija provideHttpClient() se poziva prilikom pokretanja(bootstrapanje)
aplikacije

• Bootstrapanje aplikacije je proces pokretanja i inicijalizacije Angular
aplikacije i vrši se u fajlu main.ts pomoću funkcije bootstrapApplication()

34

Obezbeđivanje HttpClient servisa u angular
aplikaciji

35

import { bootstrapApplication } from '@angular/platform-browser';
import { App } from './app/app';
import { provideHttpClient } from '@angular/common/http';

// bootstrapApplication(App, appConfig)
// .catch((err) => console.error(err));

bootstrapApplication(App, {
providers: [
provideHttpClient()

]
});

Fajl main.ts

Servis HttpClient

• Klasa HttpClient je tzv. injectable klasa i ubacuje se u servis putem
njegovog konstruktora

• Klasa HttpClient sadrži metode kojima se šalju HTTP zahtevi ka
serveru

• Podatke za aplikaciju najčešće obezbeđuje Web API

• Metoda get() šalje GET zahtev (čitanje podataka)

• Metoda post() šalje POST zahtev (kreiranje novih podataka)

• Metoda put() šalje PUT zahtev (izmena postojećih podataka)

• Metoda delete() šalje DELETE zahtev (brisanje postojećih podataka)

36

Angular In-Memory Web API

• Ovaj modul omogućava simulaciju REST API back-enda u memoriji,
prvenstveno za razvoj i testiranje aplikacija bez pravog servera

npm i angular-in-memory-web-api

37

Kreiranje baze podataka u memoriji

import { InMemoryDbService } from 'angular-in-memory-web-api';
import { Osoba } from './osoba';

export class Baza implements InMemoryDbService {
createDb() {

const osobe: Osoba[] = [
new Osoba(1, 'Marko', 'Markovic', 25),
new Osoba(2, 'Petar', 'Petrovic', 34),
new Osoba(3, 'Jovan', 'Jovanovic', 27),
new Osoba(4, 'Milan', 'Mirkovic', 22)

];

return {osobe};
}

}

ng g class baza

'api/osobe' adresa web api -ja 38

Konfigurisanje memorijskog web apija

39

bootstrapApplication(App, {
providers: [
provideHttpClient(),
importProvidersFrom(InMemoryWebApiModule.forRoot(Baza))

]
});

Kreiranje servisa za komunikaciju sa api -jem
import { Injectable } from '@angular/core';
import { throwError } from 'rxjs';
import { Osoba } from './osoba';
import { HttpClient, HttpErrorResponse } from '@angular/common/http';

@Injectable({
providedIn: 'root',

})
export class OsobaService {

private apiUrl = 'api/osobe';

constructor(private http: HttpClient) {}

private errorHandler(error: HttpErrorResponse) {
return throwError(() => error);

}
}

40

Generisanje GET zahteva ka Web serveru
• Komponenta poziva GET metodu Angular servisa

• Servis koristi HttpClient za slanje HTTP zahteva

• Kreira se HTTP GET zahtev ka Web API ruti

• Server obrađuje zahtev i vraća odgovor

• Odgovor sadrži podatke u JSON formatu

• Angular prima JSON i mapira ga u odgovarajuće objekte

• Rezultat se prosleđuje komponenti kroz Observable

41

Slanje podataka GET zahtevom

• GET metoda ne šalje podatke u telu zahteva

• Podaci se prosleđuju isključivo kroz URL adresu

• GET metoda se koristi za preuzimanje(čitanje) podataka sa servera

• Načini prosleđivanja podataka:
• Putanja (path parametri) predstavlja deo URL adrese koji se mapira na

odgovarajuću serversku klasu (kontroler) i njenu metodu
• U primeru GET /osobe/5, deo /osobe označava serverski kontroler zadužen za rad sa

osobama, dok broj 5 predstavlja ID resursa koji se prosleđuje metodi tog kontrolera

• Query parametri se koriste za slanje dodatnih kriterijuma
• Primer: GET /osobe?grad=Beograd&starost=25

42

GET metode servisa za komunikaciju sa Web Api
aplikacijom

43

pipe() funkcija prima operatore (funkcije) koje se ulančavaju nad Observable-om
catchError() je operator koji hvata greške i prosleđuje ih dalje preko errorHandler metode

vratiOsobe(): Observable<Osoba[]> {
return this.http.get<Osoba[]>(this.apiUrl)
.pipe(catchError(this.errorHandler));

}

vratiOsobu(id: number): Observable<Osoba> {
const url = `${this.apiUrl}/${id}`;
return this.http.get<Osoba>(url).pipe(
catchError(this.errorHandler)

);
}

Obrada grešaka u http komunikaciji

44

private errorHandler(error: HttpErrorResponse) {
// Logovanje greške (za developere)
console.error('Došlo je do greške:', error);

let errorMessage = 'Nepoznata greška';

if (error.error instanceof ErrorEvent) {
// Greška na klijentskoj strani
errorMessage = `Klijentska greška: ${error.error.message}`;

} else {
// Greška na serverskoj strani
errorMessage = `Serverska greška (${error.status}): ${error.message}`;

}

// Vraćanje greške kao Observable
return throwError(() => new Error(errorMessage));

}

throwError funkcija iz RxJS biblioteke kreira Observable koji će emitovati grešku
Anonimna funkcija vraća samu grešku kao vrednost koja će biti emitovana kroz Observable.

Komponenta – ubacivanje objekta servisa

export class ListaOsobaComponent {
osobe: Osoba[] = [];
odabranaOsoba: Osoba = new Osoba(0, '', '', 0);
idOsobe = 0;
imeOsobe = "";
prezimeOsobe = "";
starostOsobe = 0;
resetujPolja(): void {
this.imeOsobe = '';
this.prezimeOsobe = '';
this.starostOsobe = 0;

}

constructor(private oServis: OsobaService) {
}

45

Metode komponente: prikaziOsobe() i
prikaziOsobu()

46

prikaziOsobe(): void {
this.oServis.vratiOsobe()
.subscribe({

next: os => this.osobe = os,
error: grr => console.error('Greska: ' + grr)

});
}

prikaziOsobu(): void {
this.oServis.vratiOsobu(this.idOsobe)
.subscribe({
next: os => this.odabranaOsoba = os,
error: grr => {

console.log('Greska: ' + grr);
this.odabranaOsoba = new Osoba(0, '', '', 0);

}
});

}

Metode komponente za prikaz podataka

• Metoda prikaziOsobe() poziva servis i šalje HTTP GET zahtev za
preuzimanje liste osoba

• Komponenta se pretplaćuje (subscribe) na Observable koji vraća
servis

• Nakon uspešnog odgovora, lista osoba se smešta u niz osobe i
prikazuje u šablonu

• Metoda prikaziOsobu() šalje HTTP GET zahtev sa ID-jem osobe

• Sa servera se preuzima jedna osoba i smešta u objekat
odabranaOsoba

• U slučaju greške, greška se obrađuje u error delu subscribe metode

47

Metoda ngOnInit()

48

ngOnInit(): void {
this.prikaziOsobe();

}

Šablon komponente za prikaz podataka

49

<div class="row">
<div class="col-6">

@for (osoba of osobe; track osoba.id) {

{{ osoba.id }} {{ osoba.ime }} {{ osoba.prezime }}

}

</div>
@if (odabranaOsoba.id !== 0) {
<div class="col-6">

<p>
{{ odabranaOsoba.ime }} {{ odabranaOsoba.prezime }}

</p>
</div>

}
</div>

Šablon komponente za unos podataka

50

<div class="row">
<div class="col-6">

<div class="form-group" >
<input type="text" [(ngModel)]="idOsobe" placeholder="Unesi ID osobe"

 class="form-control">

<button class="btn btn-secondary“

 (click)="prikaziOsobu()">Prikazi</button>

</div>

</div>
</div>

Korisnički interfejs

51

Pitanje 1

Šta se prvo izvršava prilikom kreiranja Angular komponente?

a. konstruktor
b. ngOnInit
c. ngDoCheck

Odgovor: a

52

Pitanje 2

Metoda ngOnChanges se poziva:

a. u parent komponenti kada se promene njeni lokalni property
b. u child komponenti kada parent komponenta modifikuje ulazni property u

child komponenti
c. u child komponenti kada ona sama promeni vrednost svog ulaznog

property-ja

Odgovor: b

53

Pitanje 3

Angular cevi (pipes) se koriste za:

a. komunikaciju sa udaljenim serverom
b. razmenu podataka između komponenti
c. transformaciju podataka pre njihovog prikaza u pogledu

Odgovor: c

54

Pitanje 4

Angular klasa koja je zadužena za komunikaciju sa serverom i obezbeđivanje
podataka aplikaciji naziva se:

a. servis
b. pipe
c. komponenta

Odgovor: a

55

Pitanje 5

Angular servis se označava dekoratorom:

a. @Service
b. @HttpService
c. @Injectable

Odgovor: c

56

Pitanje 6

Ubacivanje objekta servisa u klasu komponente vrši se :

a. u metodi ngOnInit komponente
b. u konstruktoru komponente
c. u metodi ngDoCheck komponente

Odgovor: b

57

Pitanje 7

Klasa koja omogućava komunikaciju sa udaljenim Web API-jem naziva se:

a. HttpClient
b. HttpModule
c. HttpConnect

Odgovor: a

58

Pitanje 8

Da bi se koristila klasa HttpClient za komunikaciju sa udaljenim serverom u
standalone aplikaciji u Angular 20, potrebno je:

a. koristiti funkciju provideHttpClient() pri pokretanju aplikacije (u funkciji
bootstrapApplication)

b. Importovati HttpClientModule u svakom servisu koji koristi HttpClient
c. Imortovati RemoteModule u svakom servisu koji koristi HttpClient

Odgovor: a

59

	Slide 1: Životni ciklus komponente
	Slide 2: Konstruktor komponente
	Slide 3: Životni ciklus komponente - metode
	Slide 4: Interfejs OnInit
	Slide 5: ngOnInit
	Slide 6: ngOnInit
	Slide 7: Parent komponenta
	Slide 8: Child komponenta
	Slide 9: Šablon child komponente
	Slide 10: Šablon parent komponente
	Slide 11: Modifikacija ulaznog svojstva posredstvom parent komponente
	Slide 12: Angular cevi (pipes)
	Slide 13: Rad sa stringovima
	Slide 14: Rad sa datumom
	Slide 15: Rad sa brojevima
	Slide 16: Rad sa procentima
	Slide 17: Servisi
	Slide 18: Servisi
	Slide 19: Dependency Injection u Angularu
	Slide 20: Kreiranje klase
	Slide 21: Fajl podaci.ts unutar app foldera
	Slide 22: Kreiranje servisa
	Slide 23: Servis OsobaService
	Slide 24: Ubacivanje objekta servisa u konstruktor komponente
	Slide 25: Šablon komponente
	Slide 26: Observables
	Slide 27: Observer
	Slide 28: Observables
	Slide 29: Primer Observable i pretplata
	Slide 30: Šablon komponente
	Slide 31: Modifikacija servisa
	Slide 32: Pretplata na observable – prosleđivanje metode
	Slide 33: Komunikacija sa udaljenim serverom
	Slide 34: Angular HttpClient servis
	Slide 35: Obezbeđivanje HttpClient servisa u angular aplikaciji
	Slide 36: Servis HttpClient
	Slide 37: Angular In-Memory Web API
	Slide 38: Kreiranje baze podataka u memoriji
	Slide 39: Konfigurisanje memorijskog web apija
	Slide 40: Kreiranje servisa za komunikaciju sa api -jem
	Slide 41: Generisanje GET zahteva ka Web serveru
	Slide 42: Slanje podataka GET zahtevom
	Slide 43: GET metode servisa za komunikaciju sa Web Api aplikacijom
	Slide 44: Obrada grešaka u http komunikaciji
	Slide 45: Komponenta – ubacivanje objekta servisa
	Slide 46: Metode komponente: prikaziOsobe() i prikaziOsobu()
	Slide 47: Metode komponente za prikaz podataka
	Slide 48: Metoda ngOnInit()
	Slide 49: Šablon komponente za prikaz podataka
	Slide 50: Šablon komponente za unos podataka
	Slide 51: Korisnički interfejs
	Slide 52: Pitanje 1
	Slide 53: Pitanje 2
	Slide 54: Pitanje 3
	Slide 55: Pitanje 4
	Slide 56: Pitanje 5
	Slide 57: Pitanje 6
	Slide 58: Pitanje 7
	Slide 59: Pitanje 8

