
Kreiranje komponente



Kreiranje klase
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export class Osoba {
 constructor(public osobaId: number, public ime: string, public prezime: string) {}
}

ng g class osoba



Kreiranje komponente

• Angular CLI komandom ng g c imeKomponente automatski pravi 
TypeScript fajl, HTML šablon, CSS stilove i dodaje odgovarajući 
selector

• Kreira se folder sa imenom komonente i smesta u app folder aplikacije

• Ime klase komponente uvek počinje velikim slovom, bez obzira kako 
je naziv unet u komandi

• U verzijama pre Angular 20 klasa komponente je automatski dobijala 
nastavak Component, dok se u Angularu 20 ovaj nastavak više ne 
dodaje samostalno
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Kreiranje komponente
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ng g c listaOsoba

import { Component } from '@angular/core';

@Component({
selector: 'app-lista-osoba',
imports: [],
templateUrl: './lista-osoba.html',
styleUrl: './lista-osoba.css',

})
export class ListaOsoba {

}

<p>lista-osoba works!</p>



Folder aplikacije
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Glavna komponenta
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import { Component} from '@angular/core';

@Component({
selector: 'app-root',
imports: [],
templateUrl: './app.html',
styleUrl: './app.css'

})
export class App {

title = 'it2025';
}



Glavna komponenta - pogled
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<div class="container mt-3">
<div class="row">
<div class="col-md-6">

<app-lista-osoba></app-lista-osoba>
</div>

</div>
</div>



Polje osobe klase ListaOsoba

8

export class ListaOsoba {
osobe: Osoba[] = [
new Osoba(1, 'Marko', 'Marković'),
new Osoba(2, 'Petar', 'Petrović'),
new Osoba(3, 'Jovan', 'Jovanović'),
new Osoba(4, 'Milan', 'Milić')

];
}



Šablon komponente
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<table class="table">
<tr>
<th>Id</th>
<th>Ime</th>
<th>Prezime</th>

</tr>

@for (osoba of osobe; track osoba.osobaId) {
<tr>
<td>{{ osoba.osobaId }}</td>
<td>{{ osoba.ime }}</td>
<td>{{ osoba.prezime }}</td>

</tr>
}

</table>



Razmeštanje angular aplikacije 

• Unutar fajla index.html (koji je smešten u src folderu) u head delu 
promeniti base direktivu pre razmeštanja na web server:

<base href="./">

• U terminalu kucamo ng build

• Kreiran je dist folder

• Prekopiramo sadržaj ovog foldera na web server
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Folder dist – mesto browser aplikacije

11



Folder browser
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Folder browser se preimenje npr u it2025 i kopira na web server



Wampserver
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Kopiranje u folder wamp64/www
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Folder Angular aplikacije(sajta)
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Razmeštanje na lokalni Apache web server
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Komunikacija komponenti
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Komunikacija komponenti (parent -> child)

• Roditeljska komponenta komunicira sa child komponentom 
postavljajući njen property

• Child komponenta importuje @Input interfejs iz biblioteke 
@angular/core

• Property child komponente koji vrednost dobija od parent 
komponente označava se @Input dekoratorom
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@Input() childValue: number;



Kreiranje child komponente
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ng g c child

import { Component, Input } from '@angular/core';

@Component({
selector: 'app-child',
imports: [],
templateUrl: './child.html',
styleUrl: './child.css',

})
export class Child {
@Input() childValue: number = -1;
}



Šablon child komponente
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<hr>
<h2>Child komponenta</h2>
Tekuća vrednost brojača je: {{ childValue }}



Parent komponenta
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import { Component } from '@angular/core';
import { Child } from '../child/child';

@Component({
selector: 'app-parent',
imports: [Child],
templateUrl: './parent.html',
styleUrl: './parent.css',

})
export class Parent {
naslov = 'Komunikacija parent-child';
parentValue = 5;

uvecaj(): void {
this.parentValue++;

}

umanji(): void {
this.parentValue--;

}
}

ng g c parent



Šablon parent komponente
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<h1>{{ naslov }}!</h1>

<button (click)="uvecaj()">Uvećaj</button>
<button (click)="umanji()">Umanji</button>

<app-child [childValue]="parentValue"></app-child>



Komunikacija komponenti
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Child komponenta šalje podatake parent 
komponenti
• U child komponenti potrebno je importovati Input, Output interfejse i 

EventEmitter klasu iz modula @angular/core

• Da bi generisala događaj, child komponenta treba da definiše svojstvo 
tipa EventEmitter<T>, gde je T tip koji se šalje parent komponenti

• Svojstvo tipa EventEmitter opisuje se dekoratorom @Output

• Događaj se generiše pozivom metode emit(), kojoj se prosleđuje 
vrednost za parent komponentu

• Parent komponenta vrši pretplatu na događaj definisan u child 
komponenti i definiše handlersku funkciju za taj događaj

• Pretplata na događaj vrši se tehnikom event bindinga
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Child komponenta
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import { Component, EventEmitter, Output } from '@angular/core';
@Component({
selector: 'app-child1',
imports: [],
templateUrl: './child1.html',
styleUrl: './child1.css',

})
export class Child1 {
childValue: number = -1;

// childValueChange event
@Output() childValueChange = new EventEmitter<number>();

uvecaj() {
this.childValue++;
this.childValueChange.emit(this.childValue);

}
umanji() {
this.childValue--;
this.childValueChange.emit(this.childValue);

}
}



Šablon child komponente
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<hr>
<h2>Child komponenta</h2>
<button (click)="uvecaj()">Uvecaj</button>
<button (click)="umanji()">Umanji</button>

<br>



Parent komponenta
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export class Parent1 {
naslov = 'Komunikacija child-parent';
parentValue = 5;

childValueChangeHandler(event: number) {
this.parentValue = event;

}
}

<h1>{{ naslov }}!</h1>
<p>Trenutni broj klikova: {{ parentValue }}</p>

<app-child1 (childValueChange)="childValueChangeHandler($event)"></app-child1>

Parent komponenta pretplaćena na događaj child komponente



Rezultat prosleđivanja podataka
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Primer komunikacije komponenti -primer

ng g class osoba

export class Osoba {
  constructor(public osobaId: number, public ime: string, public prezime: string){   
  }
}
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Klasa parent komponente

export class OsobeComponent {
title = 'Primer komunikacije komponenti';

osobe: Osoba[] = [
new Osoba(1, 'Marko', 'Markovic'),
new Osoba(2, 'Petar', 'Petrovic'),
new Osoba(3, 'Jovan', 'Jovanovic'),
new Osoba(4, 'Milan', 'Mirkovic')

];

selektovanaOsoba: Osoba = new Osoba(-1, '', '');

selektuj(os: Osoba): void {
this.selektovanaOsoba = os;

}
}
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ng g c osobeComponent



CSS fajl parent komponente
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.selektujRed {
 background-color: green !important;
 color: white;
}



Šablon parent komponente

<table class="table table-bordered table-striped">
<thead>

<tr><th>Id</th><th>Ime</th><th>Prezime</th></tr>
</thead>

<tbody>
@for (osoba of osobe; track osoba.osobaId) {

<tr (click)="selektuj(osoba)"
[class.selektujRed]="osoba === selektovanaOsoba">

<td>{{ osoba.osobaId }}</td>
<td>{{ osoba.ime }}</td>
<td>{{ osoba.prezime }}</td>

</tr>
}

</tbody>
</table>
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Izgled parent komponente
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Child komponenta

ng g c osobaDetalji
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export class OsobaDetalji {
@Input() osoba: Osoba = new Osoba(-1, '', '');

}

<div class="col-md-4">
@if (osoba.osobaId !== -1) {
Id: {{ osoba.osobaId }} <br>
Ime: {{ osoba.ime }} <br>
Prezime: {{ osoba.prezime }}

}
</div>



Poziv child komponente iz parent

35

<div class="row">
<div class="col-md-7">

<app-osoba-detalji [osoba]="selektovanaOsoba"></app-osoba-detalji>
</div>

</div>



Komunikacija komponenti
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Pitanje 1
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U Angular 20 aplikaciji je potrebno je kreirati komponentu Osobe korišćenjem 
Angular CLI alata. Koju komandu treba napisati u terminalu:
a. ng g c osobe
b. node g component osobe
c. ng make c Osobe

Odgovor: a



Pitanje 2

Child komponenta ima selektor app-osoba-detalji i ulazni property osoba koji je 
tipa klase Osoba. Na koji način parent komponenta poziva child komponentu i 
prosleđuje joj objekat tipa Osoba pod nazivom selektovanaOsoba?

a. <app-osoba-detalji [child]=selektovanaOsoba></app-osoba-detalji>
b. <app-osoba-detalji [osoba]="selektovanaOsoba"></app-osoba-detalji>
c. <chilld [emit]="selektovanaOsoba"></child>

Odgovor: b
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Pitanje 3

Child komponenta treba da pošalje podatke parent komponenti generisanjem 
događaja. Da bi se to postiglo u child komponenti se definiše izlazno svojstvo koje je 
tipa
a. EventEmitter 
b. Event
c. Observable 

Odgovor: a
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Pitanje 4

Property child komponente koji vrednost dobija od parent komponente označava sa 
dekoratorom:

a. @Input()
b. @Child()
c. @Parent()

Odgovor: a
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Pitanje 5

Child komponenta treba da pošalje podatke parent komponenti generisanjem 
događaja. Da bi se to postiglo u child komponenti se definiše svojstvo tipa 
EventEmitter koga treba opisati dekoratorom
a. @Output() 
b. @Input() 
c. @Emmit() 

Odgovor: a
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