
Kreiranje komponente

Kreiranje klase

2

export class Osoba {
 constructor(public osobaId: number, public ime: string, public prezime: string) {}
}

ng g class osoba

Kreiranje komponente

• Angular CLI komandom ng g c imeKomponente automatski pravi
TypeScript fajl, HTML šablon, CSS stilove i dodaje odgovarajući
selector

• Kreira se folder sa imenom komonente i smesta u app folder aplikacije

• Ime klase komponente uvek počinje velikim slovom, bez obzira kako
je naziv unet u komandi

• U verzijama pre Angular 20 klasa komponente je automatski dobijala
nastavak Component, dok se u Angularu 20 ovaj nastavak više ne
dodaje samostalno

3

Kreiranje komponente

4

ng g c listaOsoba

import { Component } from '@angular/core';

@Component({
selector: 'app-lista-osoba',
imports: [],
templateUrl: './lista-osoba.html',
styleUrl: './lista-osoba.css',

})
export class ListaOsoba {

}

<p>lista-osoba works!</p>

Folder aplikacije

5

Glavna komponenta

6

import { Component} from '@angular/core';

@Component({
selector: 'app-root',
imports: [],
templateUrl: './app.html',
styleUrl: './app.css'

})
export class App {

title = 'it2025';
}

Glavna komponenta - pogled

7

<div class="container mt-3">
<div class="row">
<div class="col-md-6">

<app-lista-osoba></app-lista-osoba>
</div>

</div>
</div>

Polje osobe klase ListaOsoba

8

export class ListaOsoba {
osobe: Osoba[] = [
new Osoba(1, 'Marko', 'Marković'),
new Osoba(2, 'Petar', 'Petrović'),
new Osoba(3, 'Jovan', 'Jovanović'),
new Osoba(4, 'Milan', 'Milić')

];
}

Šablon komponente

9

<table class="table">
<tr>
<th>Id</th>
<th>Ime</th>
<th>Prezime</th>

</tr>

@for (osoba of osobe; track osoba.osobaId) {
<tr>
<td>{{ osoba.osobaId }}</td>
<td>{{ osoba.ime }}</td>
<td>{{ osoba.prezime }}</td>

</tr>
}

</table>

Razmeštanje angular aplikacije

• Unutar fajla index.html (koji je smešten u src folderu) u head delu
promeniti base direktivu pre razmeštanja na web server:

<base href="./">

• U terminalu kucamo ng build

• Kreiran je dist folder

• Prekopiramo sadržaj ovog foldera na web server

10

Folder dist – mesto browser aplikacije

11

Folder browser

12

Folder browser se preimenje npr u it2025 i kopira na web server

Wampserver

13

Kopiranje u folder wamp64/www

14

Folder Angular aplikacije(sajta)

15

Razmeštanje na lokalni Apache web server

16

Komunikacija komponenti

17

Komunikacija komponenti (parent -> child)

• Roditeljska komponenta komunicira sa child komponentom
postavljajući njen property

• Child komponenta importuje @Input interfejs iz biblioteke
@angular/core

• Property child komponente koji vrednost dobija od parent
komponente označava se @Input dekoratorom

18

@Input() childValue: number;

Kreiranje child komponente

19

ng g c child

import { Component, Input } from '@angular/core';

@Component({
selector: 'app-child',
imports: [],
templateUrl: './child.html',
styleUrl: './child.css',

})
export class Child {
@Input() childValue: number = -1;
}

Šablon child komponente

20

<hr>
<h2>Child komponenta</h2>
Tekuća vrednost brojača je: {{ childValue }}

Parent komponenta

21

import { Component } from '@angular/core';
import { Child } from '../child/child';

@Component({
selector: 'app-parent',
imports: [Child],
templateUrl: './parent.html',
styleUrl: './parent.css',

})
export class Parent {
naslov = 'Komunikacija parent-child';
parentValue = 5;

uvecaj(): void {
this.parentValue++;

}

umanji(): void {
this.parentValue--;

}
}

ng g c parent

Šablon parent komponente

22

<h1>{{ naslov }}!</h1>

<button (click)="uvecaj()">Uvećaj</button>
<button (click)="umanji()">Umanji</button>

<app-child [childValue]="parentValue"></app-child>

Komunikacija komponenti

23

Child komponenta šalje podatake parent
komponenti
• U child komponenti potrebno je importovati Input, Output interfejse i

EventEmitter klasu iz modula @angular/core

• Da bi generisala događaj, child komponenta treba da definiše svojstvo
tipa EventEmitter<T>, gde je T tip koji se šalje parent komponenti

• Svojstvo tipa EventEmitter opisuje se dekoratorom @Output

• Događaj se generiše pozivom metode emit(), kojoj se prosleđuje
vrednost za parent komponentu

• Parent komponenta vrši pretplatu na događaj definisan u child
komponenti i definiše handlersku funkciju za taj događaj

• Pretplata na događaj vrši se tehnikom event bindinga

24

Child komponenta

25

import { Component, EventEmitter, Output } from '@angular/core';
@Component({
selector: 'app-child1',
imports: [],
templateUrl: './child1.html',
styleUrl: './child1.css',

})
export class Child1 {
childValue: number = -1;

// childValueChange event
@Output() childValueChange = new EventEmitter<number>();

uvecaj() {
this.childValue++;
this.childValueChange.emit(this.childValue);

}
umanji() {
this.childValue--;
this.childValueChange.emit(this.childValue);

}
}

Šablon child komponente

26

<hr>
<h2>Child komponenta</h2>
<button (click)="uvecaj()">Uvecaj</button>
<button (click)="umanji()">Umanji</button>

Parent komponenta

27

export class Parent1 {
naslov = 'Komunikacija child-parent';
parentValue = 5;

childValueChangeHandler(event: number) {
this.parentValue = event;

}
}

<h1>{{ naslov }}!</h1>
<p>Trenutni broj klikova: {{ parentValue }}</p>

<app-child1 (childValueChange)="childValueChangeHandler($event)"></app-child1>

Parent komponenta pretplaćena na događaj child komponente

Rezultat prosleđivanja podataka

28

Primer komunikacije komponenti -primer

ng g class osoba

export class Osoba {
 constructor(public osobaId: number, public ime: string, public prezime: string){
 }
}

29

Klasa parent komponente

export class OsobeComponent {
title = 'Primer komunikacije komponenti';

osobe: Osoba[] = [
new Osoba(1, 'Marko', 'Markovic'),
new Osoba(2, 'Petar', 'Petrovic'),
new Osoba(3, 'Jovan', 'Jovanovic'),
new Osoba(4, 'Milan', 'Mirkovic')

];

selektovanaOsoba: Osoba = new Osoba(-1, '', '');

selektuj(os: Osoba): void {
this.selektovanaOsoba = os;

}
}

30

ng g c osobeComponent

CSS fajl parent komponente

31

.selektujRed {
 background-color: green !important;
 color: white;
}

Šablon parent komponente

<table class="table table-bordered table-striped">
<thead>

<tr><th>Id</th><th>Ime</th><th>Prezime</th></tr>
</thead>

<tbody>
@for (osoba of osobe; track osoba.osobaId) {

<tr (click)="selektuj(osoba)"
[class.selektujRed]="osoba === selektovanaOsoba">

<td>{{ osoba.osobaId }}</td>
<td>{{ osoba.ime }}</td>
<td>{{ osoba.prezime }}</td>

</tr>
}

</tbody>
</table>

32

Izgled parent komponente

33

Child komponenta

ng g c osobaDetalji

34

export class OsobaDetalji {
@Input() osoba: Osoba = new Osoba(-1, '', '');

}

<div class="col-md-4">
@if (osoba.osobaId !== -1) {
Id: {{ osoba.osobaId }}

Ime: {{ osoba.ime }}

Prezime: {{ osoba.prezime }}

}
</div>

Poziv child komponente iz parent

35

<div class="row">
<div class="col-md-7">

<app-osoba-detalji [osoba]="selektovanaOsoba"></app-osoba-detalji>
</div>

</div>

Komunikacija komponenti

36

Pitanje 1

37

U Angular 20 aplikaciji je potrebno je kreirati komponentu Osobe korišćenjem
Angular CLI alata. Koju komandu treba napisati u terminalu:
a. ng g c osobe
b. node g component osobe
c. ng make c Osobe

Odgovor: a

Pitanje 2

Child komponenta ima selektor app-osoba-detalji i ulazni property osoba koji je
tipa klase Osoba. Na koji način parent komponenta poziva child komponentu i
prosleđuje joj objekat tipa Osoba pod nazivom selektovanaOsoba?

a. <app-osoba-detalji [child]=selektovanaOsoba></app-osoba-detalji>
b. <app-osoba-detalji [osoba]="selektovanaOsoba"></app-osoba-detalji>
c. <chilld [emit]="selektovanaOsoba"></child>

Odgovor: b

38

Pitanje 3

Child komponenta treba da pošalje podatke parent komponenti generisanjem
događaja. Da bi se to postiglo u child komponenti se definiše izlazno svojstvo koje je
tipa
a. EventEmitter
b. Event
c. Observable

Odgovor: a

39

Pitanje 4

Property child komponente koji vrednost dobija od parent komponente označava sa
dekoratorom:

a. @Input()
b. @Child()
c. @Parent()

Odgovor: a

40

Pitanje 5

Child komponenta treba da pošalje podatke parent komponenti generisanjem
događaja. Da bi se to postiglo u child komponenti se definiše svojstvo tipa
EventEmitter koga treba opisati dekoratorom
a. @Output()
b. @Input()
c. @Emmit()

Odgovor: a

41

	Slide 1: Kreiranje komponente
	Slide 2: Kreiranje klase
	Slide 3: Kreiranje komponente
	Slide 4: Kreiranje komponente
	Slide 5: Folder aplikacije
	Slide 6: Glavna komponenta
	Slide 7: Glavna komponenta - pogled
	Slide 8: Polje osobe klase ListaOsoba
	Slide 9: Šablon komponente
	Slide 10: Razmeštanje angular aplikacije
	Slide 11: Folder dist – mesto browser aplikacije
	Slide 12: Folder browser
	Slide 13: Wampserver
	Slide 14: Kopiranje u folder wamp64/www
	Slide 15: Folder Angular aplikacije(sajta)
	Slide 16: Razmeštanje na lokalni Apache web server
	Slide 17: Komunikacija komponenti
	Slide 18: Komunikacija komponenti (parent -> child)
	Slide 19: Kreiranje child komponente
	Slide 20: Šablon child komponente
	Slide 21: Parent komponenta
	Slide 22: Šablon parent komponente
	Slide 23: Komunikacija komponenti
	Slide 24: Child komponenta šalje podatake parent komponenti
	Slide 25: Child komponenta
	Slide 26: Šablon child komponente
	Slide 27: Parent komponenta
	Slide 28: Rezultat prosleđivanja podataka
	Slide 29: Primer komunikacije komponenti -primer
	Slide 30: Klasa parent komponente
	Slide 31: CSS fajl parent komponente
	Slide 32: Šablon parent komponente
	Slide 33: Izgled parent komponente
	Slide 34: Child komponenta
	Slide 35: Poziv child komponente iz parent
	Slide 36: Komunikacija komponenti
	Slide 37: Pitanje 1
	Slide 38: Pitanje 2
	Slide 39: Pitanje 3
	Slide 40: Pitanje 4
	Slide 41: Pitanje 5

