Algoritmi pretrage



Linearna pretraga

* Naziva se jos i sekvencijalna pretraga
* PocCinje od pocetka niza
e Sekvencijalno se proveravaju element niza jedan po jedan

* Kraj pretrage

* Pronaden zeljeni element - uspesna pretraga, vracemo indeks prvog
pojavljivanja zeljenog elementa

* Nije pronaden zeljeni element - neuspesna pretraga, vracamo rezultat -1

Linear Search

10 14 19 | 26 27 31 33 35 42 44



Implementacija algoritma za linearnu

pretragu

static int LinSearch(int[] x, int a)

{

int n = x.Length;

for (int 1 = 0; i < n; i++)

{
if (x[i] == a)

{
return 1i;
}
}
return -1;

Radnja Broj jedinica vremena
Duzina niza 1
Inicijalizacijai=0 1

Provera uslovai<n n+1
Poredenje x[i] == a n
Inkrementiranje i++ n-1
Vracanje vrednosti 1

(return)

Ukupno (najgori slucaj) 3n+3

U najgorem slucaju imamo 3n+3 instrukcija

T(n) = 3n+3
O(n) =n




Poziv algoritma za sekvencijalnu pretragu

static void Main(string[] args)

{
int[] x = KreirajNiz(10);
PisiNiz(x);
Linija(70);

Console.WriteLine("Unesi vrednost koju trzis");
int a = int.Parse(Console.ReadLine());

int indeks = LinSearch(x, a);

if (indeks > -1)

{
Console.WriteLine($"Vrednost {a} pronadjena na poziciji {indeks}");
}
else
{
Console.WriteLine($"Vrednost {a} ne postoji u nizu");
}

Console.ReadlLine();




Prikaz rezultata pretrage

B ChlUsers\Goran\source\reposhASPOT_0TVASPOT_01\bin\DebughASPOT_01.exe - O >

B ChlUsers\Goran\source reposh ASPOT_0TASPOT_0T\bin\Debugh ASPOT_01.exe — O X

Unesi vrednost koju trzis

1

Vrednost 1 ne postoji wuw nizu




Analiza linearne pretrage

* Najbolji slucaj: trazena vrednost se nalazi na pocetku niza
* 3 vremenske jedinice
* Vremenska komplesnost O (1)

* Najgori slucaj: trazena vrednost nije u nizu
* 3*n+3
* Vremenska kompleksnost je O(n)
* Prosecan slucCaj: trazena vrednost se nalazi na poziciji i
* Broj poredenja 3*i+3,i<n
* Vremenska kompleksnost je O(n)



Linearna pretraga koriscenjem strazara (sentinel)

» Cuvamo posledniji element niza u pomoénoj promenljivoj

* Trazenu vrednost privremeno upisujemo na poslednji indeks niza
(postavljamo strazara)

* Petlja while se izvrsava dok se ne naide na vrednost jednaku trazenoj (bilo
da je to pravi element ili strazar)

* Nakon zavrsetka petlje vracamo originalni poslednji element niza

* Ako je pronadeni indeks manji od n-1, element je stvarno pronaden, u
suprotnom moguce je da je pronaden strazar

. Izbeﬁavavse provera uslova i < n u svakoj iteraciji ima manje instrukcija nego
kod klasicne pretrage

* Najveca usteda je kada element ne postoji u nizu, jer sentinel uklanja
proveru granice u svakoj iteraciji, pa je ukupno vreme znacajno manje



Linearna pretraga korisCenjem strazara -
implementacija

static int LinSearchSentinel(int[] x, int a)

{

int n = x.Length;

int poslednji
x[n - 1] = a;
int i = 0;

= x[n - 1];

while (x[i] != a)

{
}

it++;

x[n - 1] = poslednji;

if ((1 < n
{

}

else

{

return i;

return

1
=
oo

1) | (a ==x[n - 1]))

2*n+7

Radnja Broj Komentar
jedinica
vremena
Odredivanje duZine 1 Jedinica vremena za odredivanje
niza (int n = x.Length) duZine niza.
Cuvanje poslednjeg 1 Jedinica vremena za spremanje
elementa (poslednji = poslednjeg elementa.
x[n - 1])
Postavljanje 1 Jedinica vremena za postavljanje
poslednjeg elementa poslednjeg elementa.
na trazeni element
(x[n-1]=4a)
Inicijalizacija indeksa 1 Inicijalizacija promenljive i.
(i=0)
Provera uslova u n Petlja se izvrSava do kraja niza,
while (x[i] != a) uslov proveravamo n puta.
Inkrementiranje (i++) n Inkrementacija u svakoj iteraciji
petlje, n puta.
Vracéanje poslednjeg 1 Jedinica vremena za vracanje
elementa na mesto poslednjeg elementa.
(x[n - 1] = posledniji)
Provera uslovai<n - 1 Proverauslovai<n-1uif
luif izrazu.
Provera uslova a == 1 Provera uslova a ==x[n-1] uif
X[n-1]uif izrazu.
OR operacija 1 Operacija OR izmedu provere i <
n-1ia==x[n-1].
2n+7 Ukupno vreme izvrSavanja u

najgorem slucaju.




Esperimentalno uporedivanje algoritama za
linearnu pretragu

static void Main(string[] args)
{
Console.WriteLine("Unesi broj clanova niza: ");
int n = int.Parse(Console.ReadLine());
int[] x = KreirajNiz(n);
PisiNiz(x);
Linija(70);

Console.WriteLine("Unesi vrednost koju trzis");
int a = int.Parse(Console.ReadLine());

Stopwatch t1 = new Stopwatch();
t1.Start();

int indeksl = LinSearch(x, a);
t1.Stop();

TimeSpan vremel = tl.Elapsed;
t1.Reset();

t1.Start();
int indeks2 = LinSearchSentinel(x, a);
t1.Stop();

TimeSpan vreme2 = tl.Elapsed;

Console.WriteLine($"LinSearch:{vremel}");
Console.WriteLine($"LinSearchSentinel:{vreme2}");

Console.WriteLine($"Indeks1l: {indeks1}, Indeks2: {indeks2}");

Console.ReadLine();




Rezultat eksperimenta

BE CVWINDOWS system32icmd.exe — O >

Unesi broj clanova niza:




Algoritam za linear

static int LinSearchSort(int[] x, int a)

{

int 1 =0;
int n = x.Length;
for (1 =0; i < n; i++)

{
if (x[i] »>=a)
{
break;
}
}
if (x[i] == a)
{
return i;
}
else
{
return -1;
}

NuU pretragu sortiranog niza

Radnja

Broj instrukcija

Inicijalizacijai=0

1

Odredivanje duZine niza

1
n = x.Length
Inicijalizacija u for petlji i

1
=0
Provera uslovai<n n+1
Provera x[i] >= a n
Inkrementacija i++ n
Provera x[i] == a posle 1
petlje
return vrednost 1

T(n)=3n+6

11



Linearna pretraga sortiranog niza

* Poboljsava vreme pretrage kada trazena vrednost ne postoji u nizu

e Zahvaljujuci sortiranosti, nije potrebno pretraziti ceo niz kao u
nesortiranom slucaju

* Pretraga se prekida ¢cim naidemo na element veci ili jednak od
trazenog

* U odnosu na sentinel pretragu (2n + 7), linearna pretraga sortiranog
niza ima veci broj instrukcija u najgorem slucaju (3n + 6), ali je u
proseku brza jer se pretraga prekida ¢im naidemo na element > od
trazenog



Binarna pretraga

10 [ 19 ][ 19 ][ 2 | 27| 31 [ 50 |[ o8 [[ 42 ]| 4 | [tratise broj a=31

0 1 2 3 4 5 6 7 8 9

Niz sa kojim radimo mora biti sortiran.

donja =0;
gornja =9
sredina = (donja + gornja)/2 = (9+0)/2 = 4 - zaokruZzujemo na manju vrednost

|

DR EE 7 [EIE)EIE B T

0 1 2 3 B 5 6 7 8 g

ako je a == x[sredina], pronadena vrednost, kraj pretrage
ako je a>x[sredina] , pretrazuje se desni podniz
ako je a<x[sredina], pretrazuje se levi podniz

13



Binarna pretraga

5t [ o8 a2 ]

trazi se broj a=31

0 1 2 3 4 5 6 7 8 8

sredina =4; // stara vrednost

donja =sredina +1 =5; // kada se pretrazuje desni podniz
gornja =9

sredina = (donja + gornja)/2 = (5+9)/2 =7

!
28 = 8 x[7)=35>a

0 1 2 3 4 5 6 7 8 g




Binarna pretraga

trazi se broj a=31

sredina =7; // stara vrednost

donja =5;

gornja =sredina -1 =6 // kada se pretrazuje levi podniz
sredina = (donja + gornja)/2 = (5+6)/2 =5

x[5]=31=a




mplementacija algoritma

static int BinSearch(int[] x, int a)
{

int n = x.Length;

int gornja = n - 1;

int donja = 0;

int sredina;

while (donja <= gornja)

{
sredina = (donja + gornja) / 2;
if (a == x[sredina])
{
return sredina;
}
else if (a < x[sredina])
{
// pretrazujem levi podniz
gornja = sredina - 1;
}
else
{
// pretrazujem desni podniz
donja = sredina + 1;
}
}

return -1;




Analiza algoritma binarne pretrage

* Na pocCetku 1. iteracije, duzina oblasti pretrage iznosi n
* Na pocetku 2. iteracije, duzina oblasti pretrage iznosi priblizno n/2

* Na pocetku 3. iteracije, duzina oblasti pretrage iznosi priblizno n/4

* Na pocetku poslednje m-te iteracije, duzina oblasti pretrage iznosi
pribliZnon /2™



Analiza algoritma binarne pretrage -2

n/2m'=1

m-1=log,n

m=log,n+1

T(n)=m=log,n

za n =1000 broj poredenja nije veci od 10

Vremenska slozenost algoritma binarne pretrage je O(log n)




Pitanje 1

Vremenska slozenost algoritma linearnog pretrazivanja je:
a. O(n)

b. O(log n)

c. O(n?)

Odgovor: a



Pitanje 2

Vremenska kompleksnost algoritma binarnog pretrazivanja je:
a. O(n)

b. O(log n)

c. O(n?)

Odgovor: b



Pitanje 3

Algoritam binarnog pretrazivanja:

a. zahteva da podaci prethodno budu sortirani
b. ne zahteva da podaci prethodno budu sortirani
c. radiisa sortiranim i nesortiranim podacima

Odgovor: a



Pitanje 4

Koja verzija linearne pretrage ima najmanji broj instrukcija u najgorem slucaju?

a. Klasi¢na linearna(sekvencijalna) pretraga
b. Linearna pretraga sa strazarom
c. Linearna pretraga sortiranog niza

Odgovor: b



Pitanje 5

Sta je glavna prednost sentinel pretrage?

a. Nije potrebno poredenje vrednosti
b. Izbegava se provera granice u svakoj iteraciji
c. Moze da prekine pretragu ranije jer je niz sortiran

Odgovor: b



Pitanje 6

Koja pretraga najranije prekida rad u prosecnom slucaju kada trazeni element ne
postoji u nizu?

a. Klasi¢na linearna pretraga
b. Linearna pretraga sortiranog niza
c. Linearna pretraga sa strazarom

Odgovor: b



Pitanje /

U kom slucaju linearna pretraga sa strazarom ostvaruje najvecu ustedu u odnosu
na obicnu linearnu pretragu?

a. Kada je trazeni element na pocCetku niza
b. Kada je niz sortirani rastuce
c. Kada se trazeni element ne nalazi u nizu

Odgovor: c



	Slide 1: Algoritmi pretrage
	Slide 2: Linearna pretraga
	Slide 3: Implementacija algoritma za linearnu pretragu
	Slide 4: Poziv algoritma za sekvencijalnu pretragu
	Slide 5: Prikaz rezultata pretrage
	Slide 6: Analiza linearne pretrage
	Slide 7: Linearna pretraga korišćenjem stražara (sentinel)
	Slide 8: Linearna pretraga korišćenjem stražara - implementacija
	Slide 9: Esperimentalno upoređivanje algoritama za linearnu pretragu
	Slide 10: Rezultat eksperimenta
	Slide 11: Algoritam za linearnu pretragu sortiranog niza
	Slide 12: Linearna pretraga sortiranog niza
	Slide 13: Binarna pretraga 
	Slide 14: Binarna pretraga 
	Slide 15: Binarna pretraga 
	Slide 16: Implementacija algoritma
	Slide 17: Analiza algoritma binarne pretrage 
	Slide 18: Analiza algoritma binarne pretrage -2
	Slide 19: Pitanje 1
	Slide 20: Pitanje 2
	Slide 21: Pitanje 3
	Slide 22: Pitanje 4
	Slide 23: Pitanje 5
	Slide 24: Pitanje 6
	Slide 25: Pitanje 7

