
Algoritmi pretrage

Linearna pretraga

• Naziva se još i sekvencijalna pretraga

• Počinje od početka niza

• Sekvencijalno se proveravaju element niza jedan po jedan

• Kraj pretrage
• Pronađen željeni element - uspešna pretraga, vraćemo indeks prvog

pojavljivanja željenog elementa

• Nije pronađen željeni element - neuspešna pretraga, vraćamo rezultat -1

2

Implementacija algoritma za linearnu
pretragu

static int LinSearch(int[] x, int a)
{
 int n = x.Length;

for (int i = 0; i < n; i++)
 {
 if (x[i] == a)
 {
 return i;
 }
 }
 return -1;
}

T(n) = 3n+3
O(n) = n

3

U najgorem slučaju imamo 3n+3 instrukcija

Radnja Broj jedinica vremena

Dužina niza 1

Inicijalizacija i = 0 1

Provera uslova i < n n + 1

Poređenje x[i] == a n

Inkrementiranje i++ n - 1

Vraćanje vrednosti

(return)
1

Ukupno (najgori slučaj) 3n + 3

Poziv algoritma za sekvencijalnu pretragu
static void Main(string[] args)
{
 int[] x = KreirajNiz(10);
 PisiNiz(x);
 Linija(70);

Console.WriteLine("Unesi vrednost koju trzis");
 int a = int.Parse(Console.ReadLine());

 int indeks = LinSearch(x, a);

 if (indeks > -1)
 {
 Console.WriteLine($"Vrednost {a} pronadjena na poziciji {indeks}");
 }
 else
 {
 Console.WriteLine($"Vrednost {a} ne postoji u nizu");
 }

 Console.ReadLine();
}

4

Prikaz rezultata pretrage

5

Analiza linearne pretrage

• Najbolji slučaj: tražena vrednost se nalazi na početku niza
• 3 vremenske jedinice

• Vremenska komplesnost 𝑂(1)

• Najgori slučaj: tražena vrednost nije u nizu
• 3*n+3

• Vremenska kompleksnost je 𝑂(𝑛)

• Prosečan slučaj: tražena vrednost se nalazi na poziciji i
• Broj poređenja 3* i + 3, i <n

• Vremenska kompleksnost je 𝑂(𝑛)

6

Linearna pretraga korišćenjem stražara (sentinel)

• Čuvamo poslednji element niza u pomoćnoj promenljivoj
• Traženu vrednost privremeno upisujemo na poslednji indeks niza

(postavljamo stražara)
• Petlja while se izvršava dok se ne naiđe na vrednost jednaku traženoj (bilo

da je to pravi element ili stražar)
• Nakon završetka petlje vraćamo originalni poslednji element niza
• Ako je pronađeni indeks manji od n−1, element je stvarno pronađen, u

suprotnom moguće je da je pronađen stražar
• Izbegava se provera uslova i < n u svakoj iteraciji ima manje instrukcija nego

kod klasične pretrage
• Najveća ušteda je kada element ne postoji u nizu, jer sentinel uklanja

proveru granice u svakoj iteraciji, pa je ukupno vreme značajno manje

7

Linearna pretraga korišćenjem stražara -
implementacija
static int LinSearchSentinel(int[] x, int a)
{
 int n = x.Length;
 int poslednji = x[n - 1];
 x[n - 1] = a;
 int i = 0;
 while (x[i] != a)
 {
 i++;
 }
 x[n - 1] = poslednji;

if ((i < n - 1) || (a == x[n - 1]))
 {
 return i;
 }
 else
 {
 return -1;
 }
}

8

Radnja Broj

jedinica

vremena

Komentar

Određivanje dužine

niza (int n = x.Length)

1 Jedinica vremena za određivanje

dužine niza.
Čuvanje poslednjeg

elementa (poslednji =

x[n - 1])

1 Jedinica vremena za spremanje

poslednjeg elementa.

Postavljanje

poslednjeg elementa

na traženi element

(x[n - 1] = a)

1 Jedinica vremena za postavljanje

poslednjeg elementa.

Inicijalizacija indeksa

(i = 0)

1 Inicijalizacija promenljive i.

Provera uslova u

while (x[i] != a)

n Petlja se izvršava do kraja niza,

uslov proveravamo n puta.
Inkrementiranje (i++) n Inkrementacija u svakoj iteraciji

petlje, n puta.
Vraćanje poslednjeg

elementa na mesto

(x[n - 1] = poslednji)

1 Jedinica vremena za vraćanje

poslednjeg elementa.

Provera uslova i < n -

1 u if

1 Provera uslova i < n - 1 u if

izrazu.
Provera uslova a ==

x[n - 1] u if

1 Provera uslova a == x[n - 1] u if

izrazu.
OR operacija 1 Operacija OR između provere i <

n - 1 i a == x[n - 1].
2n + 7 Ukupno vreme izvršavanja u

najgorem slučaju.2*n+7

Esperimentalno upoređivanje algoritama za
linearnu pretragu
static void Main(string[] args)
{

Console.WriteLine("Unesi broj clanova niza: ");
 int n = int.Parse(Console.ReadLine());
 int[] x = KreirajNiz(n);
 PisiNiz(x);
 Linija(70);

Console.WriteLine("Unesi vrednost koju trzis");
 int a = int.Parse(Console.ReadLine());

 Stopwatch t1 = new Stopwatch();
 t1.Start();
 int indeks1 = LinSearch(x, a);
 t1.Stop();
 TimeSpan vreme1 = t1.Elapsed;
 t1.Reset();

 t1.Start();
 int indeks2 = LinSearchSentinel(x, a);
 t1.Stop();

 TimeSpan vreme2 = t1.Elapsed;

 Console.WriteLine($"LinSearch:{vreme1}");
 Console.WriteLine($"LinSearchSentinel:{vreme2}");

 Console.WriteLine($"Indeks1: {indeks1}, Indeks2: {indeks2}");

 Console.ReadLine();
}

9

Rezultat eksperimenta

10

Algoritam za linearnu pretragu sortiranog niza
static int LinSearchSort(int[] x, int a)
{
 int i =0;
 int n = x.Length;

for (i = 0; i < n; i++)
 {
 if (x[i] >=a)
 {
 break;
 }
 }

 if (x[i] == a)
 {
 return i;
 }
 else
 {
 return -1;
 }
} 11

Radnja Broj instrukcija

Inicijalizacija i = 0 1

Određivanje dužine niza
n = x.Length

1

Inicijalizacija u for petlji i
= 0

1

Provera uslova i < n n + 1

Provera x[i] >= a n

Inkrementacija i++ n

Provera x[i] == a posle
petlje

1

return vrednost 1

T(n) = 3n + 6

Linearna pretraga sortiranog niza

• Poboljšava vreme pretrage kada tražena vrednost ne postoji u nizu

• Zahvaljujući sortiranosti, nije potrebno pretražiti ceo niz kao u
nesortiranom slučaju

• Pretraga se prekida čim naiđemo na element veći ili jednak od
traženog

• U odnosu na sentinel pretragu (2n + 7), linearna pretraga sortiranog
niza ima veći broj instrukcija u najgorem slučaju (3n + 6), ali je u
proseku brža jer se pretraga prekida čim naiđemo na element ≥ od
traženog

12

Binarna pretraga
traži se broj a=31

Niz sa kojim radimo mora biti sortiran.

donja =0;
gornja =9
sredina = (donja + gornja)/2 = (9+0)/2 = 4 - zaokružujemo na manju vrednost

x[4] =27 < a

ako je a == x[sredina], pronađena vrednost, kraj pretrage
ako je a>x[sredina] , pretražuje se desni podniz
ako je a<x[sredina], pretražuje se levi podniz

13

Binarna pretraga

traži se broj a=31

sredina =4; // stara vrednost
donja =sredina +1 =5; // kada se pretražuje desni podniz
gornja =9
sredina = (donja + gornja)/2 = (5+9)/2 = 7

x[7] =35 > a

14

Binarna pretraga

traži se broj a=31

sredina =7; // stara vrednost
donja = 5;
gornja =sredina -1 =6 // kada se pretražuje levi podniz
sredina = (donja + gornja)/2 = (5+6)/2 = 5

x[5] =31 = a

15

Implementacija algoritma
static int BinSearch(int[] x, int a)
{
 int n = x.Length;
 int gornja = n - 1;
 int donja = 0;
 int sredina;

 while (donja <= gornja)
 {
 sredina = (donja + gornja) / 2;

 if (a == x[sredina])
 {
 return sredina;
 }
 else if (a < x[sredina])
 {
 // pretrazujem levi podniz
 gornja = sredina - 1;
 }
 else
 {
 // pretrazujem desni podniz
 donja = sredina + 1;
 }
 }
 return -1;
} 16

Analiza algoritma binarne pretrage

• Na početku 1. iteracije, dužina oblasti pretrage iznosi n

• Na početku 2. iteracije, dužina oblasti pretrage iznosi približno n/2

• Na početku 3. iteracije, dužina oblasti pretrage iznosi približno n/4

• Na početku poslednje m-te iteracije, dužina oblasti pretrage iznosi
približno n / 2ᵐ⁻¹

17

Analiza algoritma binarne pretrage -2

za n =1000 broj poređenja nije veći od 10

18

n / 2ᵐ⁻¹ = 1

m − 1 = log₂ n

m = log₂ n + 1

T(n) ≈ m = log₂ n

Vremenska složenost algoritma binarne pretrage je O(log n)

Pitanje 1

19

Vremenska složenost algoritma linearnog pretraživanja je:
a. O(n)
b. O(log n)
c. O(n2)

Odgovor: a

Pitanje 2

20

Vremenska kompleksnost algoritma binarnog pretraživanja je:
a. O(n)
b. O(log n)
c. O(n2)

Odgovor: b

Pitanje 3

21

Algoritam binarnog pretraživanja:

a. zahteva da podaci prethodno budu sortirani
b. ne zahteva da podaci prethodno budu sortirani
c. radi i sa sortiranim i nesortiranim podacima

Odgovor: a

Pitanje 4

22

Koja verzija linearne pretrage ima najmanji broj instrukcija u najgorem slučaju?

a. Klasična linearna(sekvencijalna) pretraga
b. Linearna pretraga sa stražarom
c. Linearna pretraga sortiranog niza

Odgovor: b

Pitanje 5

23

Šta je glavna prednost sentinel pretrage?

a. Nije potrebno poređenje vrednosti
b. Izbegava se provera granice u svakoj iteraciji
c. Može da prekine pretragu ranije jer je niz sortiran

Odgovor: b

Pitanje 6

24

Koja pretraga najranije prekida rad u prosečnom slučaju kada traženi element ne
postoji u nizu?

a. Klasična linearna pretraga
b. Linearna pretraga sortiranog niza
c. Linearna pretraga sa stražarom

Odgovor: b

Pitanje 7

25

U kom slučaju linearna pretraga sa stražarom ostvaruje najveću uštedu u odnosu
na običnu linearnu pretragu?

a. Kada je traženi element na početku niza
b. Kada je niz sortirani rastuće
c. Kada se traženi element ne nalazi u nizu

Odgovor: c

	Slide 1: Algoritmi pretrage
	Slide 2: Linearna pretraga
	Slide 3: Implementacija algoritma za linearnu pretragu
	Slide 4: Poziv algoritma za sekvencijalnu pretragu
	Slide 5: Prikaz rezultata pretrage
	Slide 6: Analiza linearne pretrage
	Slide 7: Linearna pretraga korišćenjem stražara (sentinel)
	Slide 8: Linearna pretraga korišćenjem stražara - implementacija
	Slide 9: Esperimentalno upoređivanje algoritama za linearnu pretragu
	Slide 10: Rezultat eksperimenta
	Slide 11: Algoritam za linearnu pretragu sortiranog niza
	Slide 12: Linearna pretraga sortiranog niza
	Slide 13: Binarna pretraga
	Slide 14: Binarna pretraga
	Slide 15: Binarna pretraga
	Slide 16: Implementacija algoritma
	Slide 17: Analiza algoritma binarne pretrage
	Slide 18: Analiza algoritma binarne pretrage -2
	Slide 19: Pitanje 1
	Slide 20: Pitanje 2
	Slide 21: Pitanje 3
	Slide 22: Pitanje 4
	Slide 23: Pitanje 5
	Slide 24: Pitanje 6
	Slide 25: Pitanje 7

