
Strukture

Strukture

• Strukture su vrednosni tipovi podataka

• Podaci iz strukture se čuvaju na steku

• Koriste se za modelovanje stavki koje sadrže manje količine podataka

• Strukture mogu da sadrže polja i metode kao i klase

• Ne mogu se definisati sopstvene hijerarhije nasleđivanja između
struktura

• Ne mogu se definisati strukture koje proizilaze iz klasa ili drugih
struktura

2

Sistemske strukture

3

System.Byte
System.Int16
System.Int32

System.Int64
System.Single
System.Double

System.Decimal
System.Boolean
System.Char

static void Main(string[] args)
{

Console.WriteLine("Najveci ceo broj je {0}", Int32.MaxValue);
Console.WriteLine("Najmanji ceo broj je {0}", Int32.MinValue);

string s = "1234";
int i = Int32.Parse(s);
i++;
Console.WriteLine(i);

Console.ReadKey();
}

Osobine strukture

• Ne može se definisati konstruktor bez parametara za strukturu jer za
razliku od klase kompajler generiše sopstveni default konstruktor za
strukturu

• Svaki konstruktor mora eksplicitno inicijalizovati svako polje u
strukturi

• Nije dozvoljena inicijalizacija polja pri samoj deklaraciji

• Pri kreiranju promenljive tipa strukture nije neophodno navoditi
ključnu reč new

• Moguće je deklarisati nullable promenljivu tipa strukture

4

Dodavanje .cs fajla

5

Primer strukture

struct Tacka
{
 public int x;
 public int y;

public Tacka(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
}

6

Program.cs

static void Stampaj(Tacka t)
{
 Console.WriteLine($"Koordinate tacke su: ({t.x},{t.y})");
}

7

Inicijalizacija strukture

• Ne mora se koristiti new operator da bi se

kreirala instanca strukture

• Operator new samo inicijalizuje polja u strukturi

• Uvek koristiti konstruktor da bi se osigurala

inicijalizacija polja u strukturi

8

static void Main(string[] args)
{

// Deklarisi objekat
Tacka t1;
// Inicijalizacija
t1.x = 10;
t1.y = 20;

Stampaj(t1);

Tacka t2 = new Tacka();
t2.x = 15;
t2.y = 20;
Stampaj(t2);

Tacka t3 = new Tacka(30, 40);
Stampaj(t3);
Console.ReadLine();

}

Prosleđivanje strukturnog tipa metodi

9

public static void PromeniTacku(Tacka t)
{
 t.x += 1;
 t.y += 1;
}

static void Main(string[] args)
{

Tacka t1 = new Tacka(10, 30);
 Stampaj(t1);
 PromeniTacku(t1);
 Stampaj(t1);
 Console.ReadLine();
}

Statički članovi klase

Statički članovi klase

• Pripadaju klasi, a ne instanci klase

• Pristupa im se preko imena klase

• I metode i polja i svojstva klase mogu biti statički

• Pozivaju se bez kreiranja objekata klase

• Statičke metode i svojstva ne mogu pristupati nestatičkim
poljima u klasi u kojoj se definišu

11

Statički članovi klase

• Statičko polje se često koristi da čuva broj kreiranih
objekata klase

• Statičko polje se koristi i za deljenje vrednosti između
različitih instanci te klase

• Statički član klase se definiše korišćenjem ključne reči
static pre povratnog tipa

12

13

Primer definisanja statičkog polja

class Osoba
{
 public string Ime { get; set; }
 public string Prezime { get; set; }
 public int Starost { get; set; }

 public static int brojOsoba = 0;

 public Osoba()
 {
 brojOsoba++;
 }
}

Upotreba statičkog polja

14

static void Main(string[] args)
{
 Console.WriteLine($"Pocetni broj osoba je: {Osoba.brojOsoba}");
 Osoba os1 = new Osoba();
 Osoba os2 = new Osoba();
 Console.WriteLine($"Trenutni broj osoba je: {Osoba.brojOsoba}");
 Osoba.brojOsoba = 10;
 Console.WriteLine($"Trenutni broj osoba je: {Osoba.brojOsoba}");
 Console.ReadLine();
}

Definisanje statičke metode

15

internal class Pravougaonik
{

public double Sirina { get; set; }
public double Visina { get; set; }

// Konstruktor
public Pravougaonik(double sirina, double visina)
{

Sirina = sirina;
Visina = visina;

}

// Nestatička metoda
public double Povrsina()
{

return Sirina * Visina;
}

// Statička metoda
public static double RacunajPovrsinu(double a, double b)
{

return a * b;
}

}

Poziv statičke metode

16

static void Main(string[] args)
{
 //Upotreba nestaticke metode
 Pravougaonik pr1 = new Pravougaonik(12.3, 45.6);
 double P1 = pr1.Povrsina();
 Console.WriteLine("P1= " + P1);

 //Upotreba staticke metode
 double P2 = Pravougaonik.RacunajPovrsinu(12.3, 45.6);
 Console.WriteLine("P2= " + P2);
 Console.ReadLine();
}

Statička klasa

•Ne može se instancirati

• Statičke klase sadrže samo statičke članove

•Koristi se kao kontejner za skup metoda koje rade sa
ulaznim parametrima

•Klasa Math iz prostora imena System sadrži statičke
metode za izvršavanje matematičkih operacija

17

Statička klasa Math

18

static void Main(string[] args)
{
 double x = Math.PI;
 double pi = Math.Round(x, 2);
 Console.WriteLine("pi= " + pi);
 Console.ReadLine();
}

public static class Math

Statički konstruktor

• Klasa može sadržati statički konstruktor koji se koristi za inicijalizaciju
statičkih polja klase

• I statička i nestatička klasa mogu sadržati statički konstruktor

• Statički konstruktor nema modifikator pristupa i nema parametre

• Statički konstruktor se poziva samo jednom, i to pre kreiranja bilo koje
instance ili pristupa statičkom članu

• Koristi se za dodelu početnih vrednosti statičkim poljima ili za
izvršavanje inicijalnog koda koji se pokreće samo jednom

19

Statičko svojstvo

20

class Radnik
{
 public static int brojRadnika;
 private static int brojac;

 public string Ime { get; set; }
 public string Prezime { get; set; }

 // staticki konstruktor
 static Radnik()
 {
 brojRadnika = 10;
 brojac = 0;
 }
 // staticko read only svojstvo
 public static int BrojRadnika
 {
 get { return brojac + brojRadnika; }
 }
 public Radnik()
 {

 brojac++;
 }
}

Poziv statičkog svojstva

21

static void Main(string[] args)
{
 Radnik r1 = new Radnik {Ime="Marko", Prezime="Markovic" };
 Console.WriteLine(Radnik.BrojRadnika);
 Radnik r2 = new Radnik { Ime = "Milan", Prezime = "Petrovic" };
 Console.WriteLine(Radnik.BrojRadnika);
 Console.ReadLine();
}

Nasleđivanje i polimorfizam

Nasleđivanje

• Nasleđivanje omogućava kreiranje novih tipova podataka na osnovu
postojećih tipova

• Nasleđivanje predstavlja vezu između osnovne (bazne) i izvedene
klase

• Izvedena klasa nasleđuje sva polja i metode osnovne klase

• Izvedena klasa ima i svoje specifične članove

• Izvedena klasa postaje više specijalizovana

23

Osnovni pojmovi nasleđivanja
• Osnovna klasa se naziva još i natklasa, bazna klasa, roditeljska klasa

(parent class), super klasa

• Izvedena klasa se naziva još klasa potomak (child class) i podklasa

• Izvedena klasa može da nasledi samo jednu baznu klasu

• Nasleđivanje redukuje ponavljanje koda

• public class B : A {/*telo klase B*/}
//klasa B izvedena iz klase A

• public sealed class NekaKlasa { /* telo klase */ } – tada se iz ovakve
klase ne može vršiti nasleđivanje

• Vrednosni tipovi su seald implicitno tj. ne mogu se nasleđivati

24

Vidljivost članova klase (modifikatori pristupa)

• Privatni članovi bazne klase nisu vidljivi u izvedenoj klasi, osim ako je
izvedena klasa ugnježđena unutar bazne klase

• Protected članovi klase su vidljivi u izvedenoj klasi

• Public članovi klase su vidljivi u izvedenoj klasi

• Ako nema modifikatora, član je po podrazumevanoj vrednosti private

25

Ilustracija nasleđivanja

26

Klasa Vozilo

Metode:

Kreni()
OkreniSe()
Stani()

Klasa Avion

Metode:

Kreni()
OkreniSe()
Stani()
PrizemljiSe()

Klasa Automobil

Metode:

Kreni()
OkreniSe()
Stani()
Trubi()

Izvedene klase nasleđuju metode osnovne klase i dodaju nove

Nasleđivanje u .NET Frameworku

• Svi tipovi u .NET frameworku su nasleđeni direktno ili indirektno iz klase
System.Object

27

Object

ValueType ZaposleniString

Menadžer ProgramerEnum

Prvo pravilo polimorfizma

28

Klasa Vozilo

Klasa Automobil

Metode:

Kreni()
OkreniSe()
Stani()
Trubi()

Metode:

Kreni()
OkreniSe()
Stani()

Referenca tipa bazne klase može pokazivati na objekat izvedene klase

Vozilo V = new Automobil();
V.Kreni(); //Dozvoljeno
V.Trubi(); //Nije dozvoljeno

Drugo pravilo polimorfizma

29

Uvek se poziva najbolja metoda.
Metode:

Kreni()
OkreniSe()
Stani()

Klasa Avion

Metode:

Kreni()
OkreniSe()

Stani()
PrizemljiSe()

Klasa Automobil

Metode

Kreni()
OkreniSe()
Stani()
Trubi()

Override

Klasa Vozilo

Virtuelne metode

• Kada se u baznoj klasi definiše metoda za koju se očekuje da će biti
redefinisana u izvedenoj klasi, označava se kao virtuelna (virtual)

• Metoda u izvedenoj klasi koja ima isto ime kao i virtuelna metoda u
baznoj klasi vrši "prebrisavanje" (override) metode iz bazne klase

30

Definisanje virtuelne metode u baznoj klasi

31

internal class Vozilo
{

public virtual void Kreni()
{

Console.WriteLine("Vozilo kreće");
}

}

Prebrisavanje virtuelne metode u izvedenoj klasi

internal class Automobil : Vozilo
{

public override void Kreni()
{

Console.WriteLine("Automobil kreće");
}

}

internal class Avion : Vozilo
{

public override void Kreni()
{

Console.WriteLine("Avion ubrzava po pisti i uzleće.");
}

}
32

Ilustracija 1. i 2. pravila polimorfizma

33

static void Main(string[] args)
{

Vozilo[] vozila = new Vozilo[3];

// 1. pravilo polimorfizma
vozila[0] = new Vozilo();
vozila[1] = new Automobil();
vozila[2] = new Avion();

// 2. pravilo polimorfizma
foreach (Vozilo v in vozila)
{

v.Kreni();
}

Console.ReadLine();
}

Bazna klasa

class Osoba
{
 public string Ime { get; set; }
 public string Prezime { get; set; }
 public Osoba(string Ime, string Prezime)
 {
 this.Ime = Ime;
 this.Prezime = Prezime;
 }

 public virtual void Stampaj()
 {
 Console.WriteLine($"Osoba: {Ime} {Prezime}");
 }
}

34

Izvedena klasa

class Student : Osoba
{
 public string Smer { get; set; }
 public Student(string Ime, string Prezime, string Smer):base(Ime,Prezime)
 {
 this.Smer = Smer;
 }

 public override void Stampaj()
 {
 base.Stampaj();
 Console.WriteLine("Smer: " + Smer);
 }

}

35

Primera 1 i 2 pravila polimorfizma

static void Main(string[] args)
{
 Student st1 = new Student("Pera", "Peric", "Informatika");
 st1.Stampaj();

 Osoba os1 = new Student("Mika", "Mikic", "Istorija");
 os1.Stampaj();

 Console.ReadLine();
}

36

Pitanje 1

Struktura predstavlja:

a. Vrednosni tip podataka
b. Referentni tip podataka
c. I vrednosni i referentni tip podataka

Odgovor: a

37

Pitanje 2

Da li je moguće kreirati novi strukturni tip podataka na osnovu prethodno
definisane strukture od strane korisnika?
a. da
b. ne

Odgovor: b

38

Pitanje 3

Javnom statičkom polje klase A se u nekoj metodi klase B

a. može pristupiti pre instanciranja klase A

b. ne može pristupiti pre instanciranja klase A

c. može pristupiti samo nakon instanciranja klase B

Odgovor: a

39

Pitanje 4

Statička klasa može da sadrži jedno nestatičko polje?

a. Da
b. Ne

Odgovor: b

40

Pitanje 5

Da li je moguće upotrebiti ključnu reč this unutar statičke metode:

a. Da
b. Ne

Odgovor: b

41

Pitanje 6
Kreirana je klasa Student koja modeluje Studente nekog fakulteta.
Da li polje Ime klase Student može biti statičko:

a. Da
b. Ne

Odgovor: b

42

Pitanje 7

Prvo pravilo polimorfizma glasi:
a. Uvek se poziva najbolja metoda.
b. Objektu bazne klase se uvek može pristupiti posredstvom reference tipa

izvedene klase
c. Objektu izvedene klase se uvek može pristupiti posredstvom reference

tipa bazne klase

Odgovor: c

43

Pitanje 8

Ukoliko želimo da zabranimo nasleđivanje naše klase, onda to
postižemo korišćenjem ključne reči ispred imena klase:

a. private
b. noninheritable
c. seald

Odgovor c

44

Pitanje 9

Drugo pravilo polimorfizma glasi:

a. Uvek se poziva najbolja metoda
b. Objektu bazne klase se uvek može pristupiti posredstvom reference tipa

izvedene klase
c. Objektu izvedene klase se uvek može pristupiti posredstvom reference

tipa bazne klase
d. Uvek se poziva metoda bazne klase

Odgovor: a

45

Pitanje 10

46

Koja osobina važi za virtuelne metode?

a. Mogu se definisati samo u apstraktnim klasama
b. Mogu se redefinisati (override) u izvedenim klasama
c. Moraju biti statičke

Odgovor: b

Pitanje 11

47

Kada se izvršava statički konstruktor klase?

a. Svaki put kada se kreira nova instanca klase
b. Izvršava se automatski samo jednom, pre prvog pristupa statičkim članovima

klase
c. Nakon prvog pristupa bilo kom statičkom članu

Odgovor: b

	Slide 1: Strukture
	Slide 2: Strukture
	Slide 3: Sistemske strukture
	Slide 4: Osobine strukture
	Slide 5: Dodavanje .cs fajla
	Slide 6: Primer strukture
	Slide 7: Program.cs
	Slide 8: Inicijalizacija strukture
	Slide 9: Prosleđivanje strukturnog tipa metodi
	Slide 10: Statički članovi klase
	Slide 11: Statički članovi klase
	Slide 12: Statički članovi klase
	Slide 13: Primer definisanja statičkog polja
	Slide 14: Upotreba statičkog polja
	Slide 15: Definisanje statičke metode
	Slide 16: Poziv statičke metode
	Slide 17: Statička klasa
	Slide 18: Statička klasa Math
	Slide 19: Statički konstruktor
	Slide 20: Statičko svojstvo
	Slide 21: Poziv statičkog svojstva
	Slide 22: Nasleđivanje i polimorfizam
	Slide 23: Nasleđivanje
	Slide 24: Osnovni pojmovi nasleđivanja
	Slide 25: Vidljivost članova klase (modifikatori pristupa)
	Slide 26: Ilustracija nasleđivanja
	Slide 27: Nasleđivanje u .NET Frameworku
	Slide 28: Prvo pravilo polimorfizma
	Slide 29: Drugo pravilo polimorfizma
	Slide 30: Virtuelne metode
	Slide 31: Definisanje virtuelne metode u baznoj klasi
	Slide 32: Prebrisavanje virtuelne metode u izvedenoj klasi
	Slide 33: Ilustracija 1. i 2. pravila polimorfizma
	Slide 34: Bazna klasa
	Slide 35: Izvedena klasa
	Slide 36: Primera 1 i 2 pravila polimorfizma
	Slide 37: Pitanje 1
	Slide 38: Pitanje 2
	Slide 39: Pitanje 3
	Slide 40: Pitanje 4
	Slide 41: Pitanje 5
	Slide 42: Pitanje 6
	Slide 43: Pitanje 7
	Slide 44: Pitanje 8
	Slide 45: Pitanje 9
	Slide 46: Pitanje 10
	Slide 47: Pitanje 11

