
Objektni model dokumenta (DOM)

HTML DOM

• Kada se web stranica učita u browser kreira se objektni model strane i
objekat document

• HTML DOM (Document Object Model) obezbeđuje programski
interfejs za pristup i manipulaciju html dokumentima

• HTML elemente definiše kao objekte

• Definiše metode za pristup HTML elementima

• Definiše događaje za sve HTML elemente

2

HTML DOM stablo

HTML DOM model se sastoji od stabla objekata

3

Objekat Node

• Node je osnovni objekat u DOM-u koja predstavlja bilo koji deo
dokumenta

• Node je apstraktna klasa u JavaScript-u

• To može biti element, tekst, komentar ili čak ceo dokument

• Vrste Node objekata:
• Element Node: predstavlja HTML element

• Text Node: predstavlja tekst unutar elementa

• Comment Node: predstavlja HTML komentar

• Document Node: predstavlja celokupni HTML dokument

4

Svojstva objekta Node

• nodeType (npr. 1 = element, 3 = tekst, 8 = komentar))

• nodeName (npr. div, p , h1)

• parentNode – vraća roditeljski čvor

• childNodes – vraća kolekciju (listu) podređenih čvorova

5

Vrste Node objekata

6

Node
└── Element

├── HTMLElement
├── SVGElement
└── MathMLElement

Objekat Element

• Node je osnovni tip, dok je Element njegov podtip

• Element je konkretna klasa koja nasleđuje klasu Node

• Element se takođe može se smatrati i interfejsom koji definiše

zajedničke karakteristike elemenata

• Element je specifičan tip Node objekta koji predstavlja HTML ili XML
element

• Svi Element objekti su Node objekti, ali nije svaki Node objekat i
Element objekat

7

Svojstva objekta Element

• id – jedinstveni identifikator elementa

• className – naziv klase elementa

• innerHTML – HTML sadržaj unutar elementa

• attributes – lista atributa elementa

• tagName – ime HTML taga (npr. div, p, h1)

• children – kolekcija podređenih Element čvorova

• style – omogućava pristup CSS svojstvima elementa

8

Metode objekta Element

• appendChild(child) – dodaje novi čvor kao poslednji podređeni čvor

• removeChild(child) – uklanja navedeni podređeni čvor

• setAttribute(name, value) – postavlja ili menja vrednost atributa

• getAttribute(name) – vraća vrednost određenog atributa

• querySelector(selector) – vraća prvi element koji odgovara CSS
selektoru

• querySelectorAll(selector) – vraća kolekciju svih elemenata koji
odgovaraju selektoru

9

Objekat HTMLElement

• HTMLElement je osnovni objekat u JavaScript-u koji predstavlja HTML
element u DOM strukturi

• Nasleđuje svojstva i metode iz Element i Node objekata

• HTMLElement proširuje Element sa svojstvima i metodama
specifičnim za HTML, tj. za prikaz i ponašanje elemenata u browseru

• Svi HTML elementi, kao što su <div>, , <p>, <a>, itd., su
instance HTMLElement objekta

10

Svojstva objekta HTMLElement

• element.id – čita ili postavlja id atribut elementa

• element.style – čita ili postavlja stilove elementa

• element.innerHTML - čita ili postavlja HTML sadržaj unutar elementa

• element.innerText - se koristi za dobijanje ili postavljanje vidljivog
(tekstualnog) sadržaja HTML elementa

• element. className – dohvata ili postavlja klasu elementa

• element.attributes vraća kolekciju atributa elementa

• element.hidden – određuje da li je element vidljiv

• element.title – prikazuje pomoćni tekst (tooltip) pri prelasku mišem

11

Metode objekta HTMLElement

• appendChild(childNode) - dodaje novi čvor kao poslednji čvor nadređenog
elementa

• removeChild(childNode) - uklanja podređeni čvor iz roditeljskog elementa

• setAttribute(name, value) - postavlja vrednost atributa na elementu

• getAttribute(name) - vraća vrednost atributa sa datim imenom

• focus() - postavlja fokus na element (ako je to moguće)

• getElementsByTagName(name) - vraća kolekciju svih podređenih elemenata
sa datim nazivom tag-a

• getElementsByClassName(className) - vraća kolekciju svih podređenih
elemenata sa datom klasom

• querySelector(selector) – vraća prvi element koji odgovara CSS selektoru

• querySelectorAll(selector) – vraća kolekciju svih elemenata koji odgovaraju
selektoru

12

Kolekcije HTMLCollection i NodeList

• Kolekcije omogućavaju rad sa grupom elemenata

• Kada HTML DOM metoda vrati više elemenata, rezultat se čuva u kolekciji

• Kolekcija je objekat koji sadrži više DOM elemenata

• Elementima u kolekciji se pristupa pomoću indeksa: kolekcija[0], kolekcija[1], ...

• Kolekcije se mogu prolaziti petljom for ili for...of

• HTMLCollection
• Sadrži samo HTML elemente
• Ažurira se automatski ako se DOM promeni (živa kolekcija)
• Vraćaju metode getElementsByTagName() i getElementsByClassName()

• NodeList
• Može sadržati različite tipove čvorova
• Ne ažurira se automatski – ostaje statična kopija DOM-a
• vraća metoda querySelectorAll()

13

Svojstva objekta document

• Objekat document u JavaScriptu predstavlja celokupan HTML dokument
koji je trenutno učitan u browseru

• document.title - vraća ili postavlja naslov dokumenta

• document.body - vraća referencu na element <body> dokumenta

• document.head - vraća referencu na element <head> dokumenta

• document.URL - vraća URL trenutnog dokumenta

• document.cookie – vraća ili postavlja kolačiće povezane s dokumentom

• document.forms – vraća kolekciju svih <form> elemenata u dokumentu

14

Metode objekta document

• document.getElementById(id) – vraća element sa datim ID-om, povratna
vrednost je Element

• document.getElementsByClassName(className) – vraća kolekciju
(HTMLCollection) svih elemenata sa datom klasom

• document.getElementsByTagName(tagName) – vraća kolekciju
(HTMLCollection) svih elemenata sa datim nazivom taga

• document.querySelector(selector) – vraća prvi element koji odgovara
datom CSS selektoru (povratna vrednost: Element ili null)

• document.querySelectorAll(selector) – vraća kolekciju svih elemenata koji
odgovaraju CSS selektoru (povratna vrednost: NodeList)

15

Izvedene klase iz klase HTMLElement

• HTMLDivElement - predstavlja <div> element

• HTMLSpanElement - predstavlja element

• HTMLAnchorElement - predstavlja <a> (link) element

• HTMLImageElement - predstavlja element (sliku)

• HTMLButtonElement - predstavlja <button> element

• HTMLInputElement - predstavlja <input> polje

• HTMLFormElement - predstavlja <form> element

16

Pristup elementima kroz DOM

17

<body>
<h2 id="naslov">Naslov</h2>
<p class="tekst">Prvi paragraf</p>
<p class="tekst">Drugi paragraf</p>

<script>
let h2 = document.getElementById("naslov");
let paragrafi = document.getElementsByClassName("tekst");
console.log(h2);
console.log(paragrafi);

</script>

</body>

Pristup elementima kroz DOM

18

Promena sadržaja HTML elemenata

19

<body>
<h2 id="naslov">Zdravo svete!</h2>

<script>
let naslov = document.getElementById("naslov");
naslov.innerText = "Tekst je promenjen!";
naslov.style.color = "blue";
naslov.style.fontSize = "28px";

</script>
</body>

20

<body>
<h2 id="naslov">Naslov stranice</h2>
<p class="tekst">Prvi paragraf</p>
<p class="tekst">Drugi paragraf</p>

<script>
// 1. Dohvatanje po ID-u
let h2 = document.getElementById("naslov");
console.log("getElementById:", h2);

// 2. Dohvatanje po imenu taga
let paragrafi = document.getElementsByTagName("p");
console.log("getElementsByTagName:", paragrafi);

// 3. Dohvatanje po klasi
let tekstovi = document.getElementsByClassName("tekst");
console.log("getElementsByClassName:", tekstovi);

// 4. Primer rada sa kolekcijom
tekstovi[0].style.color = "blue";
tekstovi[1].innerText = "Ovo je izmenjen drugi paragraf.";

</script>
</body>

Događaji u JavaScript-u

• Događaji (events) su akcije ili promene koje se dešavaju u browseru

• JavaScript može reagovati na te događaje izvršavanjem funkcije

• Najčešće potiču od korisnika (klik, unos, pomeranje miša...), ali mogu
biti i sistemski (učitavanje stranice, promena veličine prozora itd.)

• Svaki događaj ima rukovaoca (event handler) – funkciju koja se
izvršava kada se dogodi događaj

21

Osnovni događaji u DOM-u

22

Kategorija Događaji Opis

Događaji miša
onclick, ondblclick, onmouseover,
onmouseout, onmousedown,
onmouseup

Reaguju na klikove i kretanje miša

Događaji tastature onkeydown, onkeyup, onkeypress
Aktiviraju se kada korisnik pritisne
ili otpusti taster

Događaji dokumenta / stranice
onload, onresize, onscroll,
onunload

Odnose se na učitavanje i promene
prikaza stranice

Događaji unosa oninput, onchange
Reaguju na promene vrednosti u
elementima (npr. poljima za unos)

Događaji fokusa onfocus, onblur
Aktiviraju se kada element dobije ili
izgubi fokus

Definisanje događaja u JavaScript-u

• Kao HTML atributi
• onclick="funkcija()" – klasičan, stariji način

• Putem svojstva elementa
• element.onclick = funkcija – definisano u JavaScript-u

• Pomoću metode addEventListener()
• element.addEventListener("click", funkcija) – savremeni, preporučeni način

23

Događaji kao HTML atributi

24

<body>

<h2 onclick="promeniTekst()">Klikni na mene</h2>

<script>
function promeniTekst() {

document.querySelector("h2").innerText = "Klik registrovan!";
}

</script>

</body>

Događaji putem svojstva elementa

25

<body>

<h2 id="naslov">Klikni na mene</h2>

<script>
let naslov = document.getElementById("naslov");

naslov.onclick = function() {
naslov.innerText = "Klik registrovan!";

};
</script>

</body>

Definisanje događaja pomoću metode
addEventListener()

• Savremen i preporučeni način definisanja događaja

• Omogućava dodavanje više funkcija na isti događaj

• Događaj i funkcija se povezuju pomoću metode:
element.addEventListener("dogadjaj", funkcija)

• Funkcija koja reaguje na događaj odnosno hendler događaja može
biti:
• Anonimna funkcija – jednostavna i koristi se samo na tom mestu

• Imenovana funkcija – može se ponovo koristiti ili kasnije ukloniti

26

Prtplata na anonimnu funkciju

27

<body>

<button id="dugme">Klikni me</button>
<script>
let dugme = document.getElementById("dugme");

dugme.addEventListener("click", function() {
alert("Događaj pokrenut!");

});
</script>

</body>

Pretplata na imenovanu funkciju

28

<body>
<button id="dugme">Klikni me</button>
<script>
let dugme = document.getElementById("dugme");

//Anonimna funkcija
dugme.addEventListener("click", function() {
alert("Anonimna funkcija pokrenuta!");

});

// Imenovana funkcija
function prikaziPoruku() {

alert("Imenovana funkcija pokrenuta!");
}

dugme.addEventListener("click", prikaziPoruku);
</script>

</body>

Metoda removeEventListener()

29

<body>

<button id="dugme">Klikni me</button>

<script>
let dugme = document.getElementById("dugme");

function prikaziPoruku() {
alert("Klik registrovan!");
dugme.removeEventListener("click", prikaziPoruku);

}

dugme.addEventListener("click", prikaziPoruku);
</script>

</body>

Uvod u TypeScript

TypeScript

• TypeScript je objektno orijentisan programski jezik

• TypeScript je tipizirani nadskup JavaScript-a

• Kod napisan u TypeScript-u ne može se izvršiti direktno, već se
prevodi u JavaScript

31

Instaliranje TypeScript-a

npm install -g typescript

32

Skraćena verzija komande:
npm i -g typescript

Provera TypeScript verzije

tsc -v

33

Kreiranje konfiguracionih fajlova

• Fajl package.json sadrži osnovne informacije o projektu: naziv, verziju,
autora, skripte i zavisnosti (dependencies)
• Zahvaljujući fajlu package.json, Node.js i npm znaju koje pakete treba

instalirati i kako pokrenuti projekat

• Fajl tsconfig.json sadrži podešavanja TypeScript kompajlera
uključujući:
• gde se nalaze izvorišni .ts fajlovi

• gde se čuvaju prevedeni .js fajlovi

• koji standard JavaScript-a da koristi (ES6, ESNext itd.)

• da li se dozvoljavaju stroge provere tipova 34

npm init -y - kreira package.json fajl
tsc --init - kreira tsconfig.json fajl

Prikaz terminala

35

Tipovi podataka u TypeScript-u

36

• any – predstavlja bilo koji tip podataka; isključuje proveru tipova.

• number – celi i realni brojevi (TypeScript ne razlikuje int i float)

• string – tekstualni podaci, sekvenca Unicode karaktera unutar
navodnika ("tekst" ili 'tekst’).

• boolean – logička vrednost, može biti true ili false

• void – koristi se kao povratni tip funkcija koje ne vraćaju vrednost

• null – označava objekat koji namerno nema vrednost

• undefined – vrednost dodeljena neinicijalizovanoj promenljivoj

Upotreba okruženja VS Code

• Kreira se fajl sa ekstenzijom .ts npr. primer01.ts

• U fajl se upisuje TypeScript kod

• Kompajlira se u terminalu pomoću komande:
tsc primer01.ts

• Dobijeni JavaScript fajl se izvršava pomoću Node-a:
node primer01.js

37

Deklaracija i inicijalizacija promenljivih

38

let ime: string; // deklaracija promenljive
let prezime: string = 'Marković'; // deklaracija i inicijalizacija
const grad: string = 'Beograd'; // konstanta (ne može se ponovo dodeliti vrednost)
let osoba = 'Marko'; // tip se automatski određuje (string)

TypeScript moduli

• Fajl u TypeScript-u se smatra skriptom ako nema export ili import
naredbu, u tom slučaju njegov kod ima globalni opseg

• Fajl se tretira kao modul samo ako sadrži export ili import

• Kod unutar modula ima svoj lokalni opseg – promenljive, funkcije i klase
nisu automatski dostupne u drugim fajlovima

• Da bi kod iz jednog fajla bio vidljiv u drugom, mora se izvesti pomoću
export i zatim uvesti pomoću import

• Modul se kreira pomoću ključne reči export, a koristi pomoću import

• Moduli omogućavaju organizovan, izolovan i lako održiv kod, bez
konflikata imena između fajlova

39

TypeScript promenljive

40

export {}; // čini fajl modulom, sprečava globalni opseg

let ime: string = 'Marko';
let a: number = 50;
let b: number = 42.5;
let suma: number = a + b;

console.log('Ime:', ime);
console.log('Prvi broj:', a);
console.log('Drugi broj:', b);
console.log('Suma je:', suma);

Operatori u TypeScript-u

• TypeScript koristi iste operatore kao JavaScript

• Nema novih operatora niti promena u njihovom ponašanju

• Sve operacije se izvršavaju na isti način kao u JavaScript-u

• Jedina razlika je što TypeScript omogućava proveru tipova prilikom
korišćenja operatora

• Time sprečava greške koje bi JavaScript dozvolio prilikom izvršavanja

• Ako se operator koristi nad nekompatibilnim tipovima,
TypeScript to može prijaviti tokom kompajliranja, pre nego što se kod
izvrši

41

Operatori u TypeScript-u

42

let x: number = 5;
let y: string = "10";

let rezultat1:number = x + y; // Greška: nije dozvoljeno sabirati number i string
let rezultat2 = x + Number(y); // Ispravno: eksplicitna konverzija tipa

TypeScript funkcije

• Funkcije u TypeScript-u rade kao u JavaScript-u,ali omogućavaju
definisanje tipova za:
• parametre funkcije – vrednosti koje funkcija prima

• povratnu vrednost – vrednost koju funkcija vraća pomoću naredbe return

• TypeScript proverava da li funkcija prima i vraća vrednosti
odgovarajućih tipova

43

TypeScript funkcije

44

export {}; // fajl je modul

function saberi1(x: number, y: number): number {
return x + y;

}

function saberi2(x: number, y: number): void {
console.log('Rezultat je:', x + y);

}

let rezultat: number = saberi1(5, 6.1);
console.log(rezultat);

saberi2(6.1, 7.8);

Funkcija sa opcionim parametrom

• Opcionim parametrima u TypeScript-u se označavaju parametri koji
nisu obavezni pri pozivu funkcije

• Označavaju se znakom ? iza imena parametra

• Ako se opcioni parametar ne prosledi, njegova vrednost je undefined

• U TypeScript-u opcioni parametar (?) mora biti definisan posle svih
obaveznih parametara

45

Funkcija sa opcionim parametrom

46

Ime: Marko
Prezime: Markovic

Ime: Jovan
Prezime: Jovanovic
Email: jovan@gmail.com

export { };

function prikazi(ime: string, prezime: string, email?: string): void
{

console.log('Ime:', ime);
console.log('Prezime:', prezime);
if (email != undefined) {

console.log('Email:', email);
}
console.log('________________');

}
prikazi('Marko', 'Markovic');
prikazi('Jovan', 'Jovanovic', 'jovan@gmail.com');

Podrazumevana vrednost parametra funkcije

47

goran@DESKTOP-ESB9HU8 MINGW64 ~/Desktop/IT05
$ node primer07
Konacna cena: 800
Konacna cena: 1000
Konacna cena: 700

export { };
function racunaj(cena: number, popust: number = 0.2): void {

let konacnaCena = cena * (1 - popust);
console.log('Konacna cena:', konacnaCena);

}
racunaj(1000);
racunaj(1000, 0);
racunaj(1000, 0.3);

Anonimna funkcija

• Anonimna funkcija je funkcija bez imena

• Definiše se unutar izraza i može se dodeliti promenljivoj, proslediti
kao argument ili vratiti iz druge funkcije

48

export{};
let zbir = function (a: number, b: number): void {

console.log('Zbir je:', a + b);
};
zbir(5, 6);

Lambda izrazi za definisanje anonimnih funkcija

• Lambda (ili arrow) funkcije su skraćeni oblik anonimnih funkcija

• Koriste operator => umesto ključne reči function

• Najčešće se koriste kada je funkcija kratka ili se prosleđuje kao
argument

49

Lambda izrazi za definisanje anonimnih funkcija

50

export{};

let prikaziVreme = ()=> new Date().toLocaleTimeString();
let vreme = prikaziVreme();
console.log(vreme);
let uvecaj10 = (x:number)=>x+10;
let r:number = uvecaj10(2);
console.log("rezultat",r);

goran@DESKTOP-ESB9HU8 MINGW64 ~/Desktop/IT05
$ tsc primer09

goran@DESKTOP-ESB9HU8 MINGW64 ~/Desktop/IT05
$ node primer09
20:34:15
rezultat 12

Nizovi

51

export{};

const brojevi:number[] = [1,3,5,7,9];

//for
for (let i = 0; i < brojevi.length; i++) {

console.log(brojevi[i]);
}
//for...in
console.log('--------------');
for (const i in brojevi) {

console.log(i,brojevi[i]);
}
console.log('--------------');

//for...of
for (const i of brojevi) {

console.log(i);
}
//forEach
console.log('--------------');
brojevi.forEach(function (x:number) {

console.log(x);
});

const brojevi: Array<number> = [1,3,5,7,9];

Filtriranje niza – funkcija filter

52

export{};

const a:number[] = [12,5,8,130,44];

// izdvajanje brojeva većih od 20
const b = a.filter(x=>x>20);

for (const i of b) {
console.log(i);

}

$ node primer11
130
44

Transformacija niza – funkcija map

53

export{};
const a:number[] = [12,5,8,130,44];
const c = a.map(x=>x*x);

for (const i in c) {
console.log(i,c[i]);

}

$ node primer12
0 144
1 25
2 64
3 16900
4 1936

Typescript klase

• TypeScript koristi klase kako bi omogućio upotrebu OOP principa kao što
su:apstrakcija, enkapsulacija, nasleđivanje i polimorfizam.

• Klasa se sastoji od:
• polja (properties) — podaci koje objekat čuva
• metoda (methods) — funkcije koje objekat izvodi
• konstruktora (constructor) — funkcija koja se poziva pri kreiranju objekta

• Podrazumevano, polja klase su public, osim ako se ne navede drugačiji
modifikator (private, protected)

• Klase u TypeScript-u se kompajliraju u JavaScript funkcije — time su
potpuno kompatibilne sa starijim verzijama JS-a

• Korišćenjem klasa, TypeScript uvodi tipizaciju i strukturu u JavaScript kod

54

Klase

55

export{};
class Osoba {

ime:string;
prezime: string;
starost:number;
constructor(ime:string, prezime: string, starost:number) {

this.ime = ime;
this.prezime = prezime;
this.starost = starost;

}

stampaj1():void
{

console.log('Ime',this.ime);
console.log('Prezime', this.prezime);
console.log('Starost',this.starost);

}

stampaj2():string
{

return this.ime + " " + this.prezime;
}

}
const os1 = new Osoba('Marko','Markovic',25);
os1.stampaj1();
console.log(os1.stampaj2());

$ node primer13
Ime Marko
Prezime Markovic
Starost 25
Marko Markovic

Automatsko dodeljivanje parametara
konstruktora svojstvima klase

56

export { };
class Osoba {

constructor(public ime: string, public prezime: string, public starost: number) {
}
stampaj(): void {

console.log(this.ime, this.prezime, this.starost);
}

}
const os1 = new Osoba('Marko', 'Markovic', 25);
os1.stampaj();

Klasa sa privatnim poljima

57

export class Osoba {
constructor(private ime: string, private prezime: string, private starost: number) {
}
stampaj(): void {

console.log(this.ime, this.prezime, this.starost);
}

}

primer15.ts

import { Osoba } from "./primer15";

const os1 = new Osoba('Marko','Markovic',25);
os1.stampaj();

primer16.ts

Definisanje gettera/settera
tsc --target es5 primer17

58

export { };
class Osoba {

private _ime: string = '';
//getter
public get ime(): string {

return this._ime;
}

//setter
public set ime(novoIme: string) {

if (novoIme.length > 10) {
console.log('Ime ne moze imati vise od 10 karaktera');
return;

}
this._ime = novoIme;

}
}
const os = new Osoba();
os.ime = 'Marko23133435346575474';
console.log(os.ime);

TypeScript se kompajlira u ES5 ili noviji standard da bi get i set radili korektno

Interfejsi

• Interfejs u TypeScript-u definiše skup svojstava i metoda koje neki objekat ili klasa mora da
poseduje, ali ne sadrži njihovu implementaciju

• Kaže šta objekat mora da ima, ali ne kako to treba da bude implementirano

• Može se koristiti za:

• definisanje tipa promenljive

• opisivanje strukture objekata

• definisanje “ugovora” koji klase treba da slede

• Interfejs sadrži samo potpis svojstava i metoda (bez implementacije)

• Klasa koja implementira interfejs mora da obezbedi implementaciju svih definisanih članova.

• TypeScript kompajler ne prevodi interfejse u JavaScript — oni postoje samo u fazi provere tipova
(duck typing).

59

Interfejs - primer

60

tsc

.ts fajl

.js fajl

export{};
interface IOsoba {

id: number;
ime: string;
prezime: string;

}
const os1: IOsoba = {

id: 1,
ime: "Marko",
prezime: "Markovic"

};

const os1 = {
id: 1,
ime: "Marko",
prezime: "Markovic"

};

Interfejs sa opcionim i read-only svojstvima

61

export {};
interface IOsoba {
readonly id: number; // svojstvo koje se ne može menjati
ime: string;
prezime: string;
email?: string; // opciono svojstvo

}

const os1: IOsoba = {
id: 1,
ime: "Marko",
prezime: "Markovic"

};
// ispis
console.log(os1);
// pokušaj izmene readonly polja
// os1.id = 2; // Greška: Cannot assign to 'id' because it is a read-only property
// opciono svojstvo se može dodati kasnije
os1.email = "marko@gmail.com";
console.log(os1);

Interfejs kao tip parametra funkcije

62

export{};

interface IOsoba {
id: number;
ime: string;
prezime: string;

}

function Stampaj(os: IOsoba) {
console.log(os.id, os.ime, os.prezime);

}

const os1= {
id: 1,
ime: "Marko",
prezime: "Markovic",
adresa: "Cara Dusana 22"

};
Stampaj(os1);

Klasa bazirana na interfejsu

63

interface IOsoba {
ime: string;
prezime: string;

}
class Student implements IOsoba {
// 'ime' i 'prezime' su deo interfejsa, 'smer' je dodatno svojstvo
constructor(
public ime: string,
public prezime: string,
public smer: string

) {}

stampaj(): void {
console.log('Ime:', this.ime);
console.log('Prezime:', this.prezime);
console.log('Smer:', this.smer);

}
}
const st = new Student("Marko", "Markovic", "Informacioni sistemi");
st.stampaj();

Pitanje 1

64

Koji je osnovni objekat DOM stabla?

a. Element
b. Node
c. Attribute

Odgovor: b

Pitanje 2

Koja od sledećih klasa nasleđuje klasu Element i predstavlja osnovu za sve HTML
elemente?

a. Node
b. HTMLElement
c. Document

Odgovor: b

65

Pitanje 3

Šta je document objekat u JavaScript-u?

a. Objekat koji predstavlja samo <body> deo stranice
b. Objekat koji predstavlja samo <head> deo stranice
c. Objekat koji predstavlja ceo HTML dokument

Odgovor: c

66

Pitanje 4

Kojim svojstvom pristupamo HTML sadržaju elementa?

a. innerText
b. innerHTML
c. outerHTML

Odgovor: b

67

Pitanje 5

Kojom se metodom pristupa elementu na osnovu ID atributa u DOM stablu??

a. document.getElementById("id")
b. document.getElement("id")
c. document.querySelectorAll("id")

Odgovor: a

68

Pitanje 6

Prevođenje TypeScript koda koji se nalazi u fajlu primer01.ts u JavaScript fajl
primer01.js vrši se korišćenjem sledeće komande:

a. compile primer01
b. tsc primer01
c. node primer01

Odgovor: b

69

Pitanje 7

Polja u TypeScript klasama imaju podrazumevani modifikator pristupa:

a. public
b. private
c. protected

Odgovor: a

70

Pitanje 8

Konstruktor TypeScript klase je funkcija koja ima:

a. isto ime kao i klasa
b. ime constructor
c. ime get

Odgovor: b

71

Pitanje 9

Unutar osoba.ts fajla definisan je samo interfejs IOsoba. Šta se dobija
izvršavanjem komande: tsc osoba
a. osoba.js fajl koji je prazan
b. osoba.js fajl koji sadrži interfejs
c. osoba.js fajl koji sadrži klasu

Odgovor: a

72

Pitanje 10

Koji uslov mora da bude ispunjen da bi se TypeScript fajl tretirao kao modul?

a. Da sadrži definiciju klase
b. Da u njemu postoji import ili export naredba
c. Da ima ekstenziju .ts

Odgovor: b

73

	Slide 1: Objektni model dokumenta (DOM)
	Slide 2: HTML DOM
	Slide 3: HTML DOM stablo
	Slide 4: Objekat Node
	Slide 5: Svojstva objekta Node
	Slide 6: Vrste Node objekata
	Slide 7: Objekat Element
	Slide 8: Svojstva objekta Element
	Slide 9: Metode objekta Element
	Slide 10: Objekat HTMLElement
	Slide 11: Svojstva objekta HTMLElement
	Slide 12: Metode objekta HTMLElement
	Slide 13: Kolekcije HTMLCollection i NodeList
	Slide 14: Svojstva objekta document
	Slide 15: Metode objekta document
	Slide 16: Izvedene klase iz klase HTMLElement
	Slide 17: Pristup elementima kroz DOM
	Slide 18: Pristup elementima kroz DOM
	Slide 19: Promena sadržaja HTML elemenata
	Slide 20
	Slide 21: Događaji u JavaScript-u
	Slide 22: Osnovni događaji u DOM-u
	Slide 23: Definisanje događaja u JavaScript-u
	Slide 24: Događaji kao HTML atributi
	Slide 25: Događaji putem svojstva elementa
	Slide 26: Definisanje događaja pomoću metode addEventListener()
	Slide 27: Prtplata na anonimnu funkciju
	Slide 28: Pretplata na imenovanu funkciju
	Slide 29: Metoda removeEventListener()
	Slide 30: Uvod u TypeScript
	Slide 31: TypeScript
	Slide 32: Instaliranje TypeScript-a
	Slide 33: Provera TypeScript verzije
	Slide 34: Kreiranje konfiguracionih fajlova
	Slide 35: Prikaz terminala
	Slide 36: Tipovi podataka u TypeScript-u
	Slide 37: Upotreba okruženja VS Code
	Slide 38: Deklaracija i inicijalizacija promenljivih
	Slide 39: TypeScript moduli
	Slide 40: TypeScript promenljive
	Slide 41: Operatori u TypeScript-u
	Slide 42: Operatori u TypeScript-u
	Slide 43: TypeScript funkcije
	Slide 44: TypeScript funkcije
	Slide 45: Funkcija sa opcionim parametrom
	Slide 46: Funkcija sa opcionim parametrom
	Slide 47: Podrazumevana vrednost parametra funkcije
	Slide 48: Anonimna funkcija
	Slide 49: Lambda izrazi za definisanje anonimnih funkcija
	Slide 50: Lambda izrazi za definisanje anonimnih funkcija
	Slide 51: Nizovi
	Slide 52: Filtriranje niza – funkcija filter
	Slide 53: Transformacija niza – funkcija map
	Slide 54: Typescript klase
	Slide 55: Klase
	Slide 56: Automatsko dodeljivanje parametara konstruktora svojstvima klase
	Slide 57: Klasa sa privatnim poljima
	Slide 58: Definisanje gettera/settera
	Slide 59: Interfejsi
	Slide 60: Interfejs - primer
	Slide 61: Interfejs sa opcionim i read-only svojstvima
	Slide 62: Interfejs kao tip parametra funkcije
	Slide 63: Klasa bazirana na interfejsu
	Slide 64: Pitanje 1
	Slide 65: Pitanje 2
	Slide 66: Pitanje 3
	Slide 67: Pitanje 4
	Slide 68: Pitanje 5
	Slide 69: Pitanje 6
	Slide 70: Pitanje 7
	Slide 71: Pitanje 8
	Slide 72: Pitanje 9
	Slide 73: Pitanje 10

