Objektni model dokumenta (DOM)

HTML DOM

* Kada se web stranica ucita u browser kreira se objektni model strane i
objekat document

e HTML DOM (Document Object Model) obezbeduje programski
interfejs za pristup i manipulaciju htm| dokumentima

* HTML elemente definise kao objekte
* DefiniSe metode za pristup HTML elementima
* DefiniSe dogadaje za sve HTML elemente

HTML DOM stablo

Document

Root elermment:

<htrml=
I
| |
Element: Element:
zhead> =zbody =
[l |

Elernent: Attribute: Elernent: Elernent:

<title “href” <ax <hl=

Text: Text: Text:
My title® “My hnk™ *My header”

HTML DOM model se sastoji od stabla objekata

Objekat Node

* Node je osnovni objekat u DOM-u koja predstavlja bilo koji deo
dokumenta

* Node je apstraktna klasa u JavaScript-u
* To moze biti element, tekst, komentar ili cak ceo dokument

* \/rste Node objekata:
* Element Node: predstavlja HTML element
* Text Node: predstavlja tekst unutar elementa
e Comment Node: predstavlja HTML komentar
* Document Node: predstavlja celokupni HTML dokument

Svojstva objekta Node

* nodeType (npr. 1 = element, 3 = tekst, 8 = komentar))
 nodeName (npr. div, p, hl)

e parentNode — vraca roditeljski ¢vor

 childNodes — vraca kolekciju (listu) podredenih ¢vorova

Vrste Node objekata

Node
L — Element
HTMLElement
— SVGElement

—— MathMLElement

Objekat Element

* Node je osnovni tip, dok je Element njegov podtip
* Element je konkretna klasa koja nasleduje klasu Node

* Element se takode moze se smatrati i interfejsom koji definise
zajednicke karakteristike elemenata

* Element je specifican tip Node objekta koji predstavlja HTML ili XML
element

 Svi Element objekti su Node objekti, ali nije svaki Node objekat i
Element objekat

Svojstva objekta Element

* id — jedinstveni identifikator elementa

* className — naziv klase elementa

* innerHTML — HTML sadrzaj unutar elementa

e attributes — lista atributa elementa

e tagName — ime HTML taga (npr. div, p, h1)

* children — kolekcija podredenih Element ¢vorova

* style — omogucava pristup CSS svojstvima elementa

Metode objekta Element

* appendChild(child) — dodaje novi ¢vor kao poslednji podredeni ¢vor
* removeChild(child) — uklanja navedeni podredeni ¢vor
 setAttribute(name, value) — postavlja ili menja vrednost atributa
 getAttribute(name) — vraca vrednost odredenog atributa

* querySelector(selector) — vraca prvi element koji odgovara CSS
selektoru

* querySelectorAll(selector) — vraca kolekciju svih elemenata koji
odgovaraju selektoru

Objekat HTMLElement

* HTMLElement je osnovni objekat u JavaScript-u koji predstavlja HTML
element u DOM strukturi

* Nasleduje svojstva i metode iz Element i Node objekata

* HTMLElement prosiruje Element sa svojstvima i metodama
specificnim za HTML, tj. za prikaz i ponasanje elemenata u browseru

* Svi HTML elementi, kao Sto su <div>, , <p>, <a>, itd., su
instance HTMLElement objekta

Svojstva objekta HTMLElement

* element.id — Cita ili postavlja id atribut elementa
* element.style — Cita ili postavlja stilove elementa
* element.innerHTML - Cita ili postavlja HTML sadrzaj unutar elementa

* element.innerText - se koristi za dobijanje ili postavljanje vidljivog
(tekstualnog) sadrzaja HTML elementa

* element. className — dohvata ili postavlja klasu elementa

* element.attributes vraca kolekciju atributa elementa

* element.hidden — odreduje da li je element vidljiv

e element.title — prikazuje pomocni tekst (tooltip) pri prelasku misem

Metode objekta HTMLElement

» appendChild(childNode) - dodaje novi ¢vor kao poslednji ¢vor nadredenog
elementa

* removeChild(childNode) - uklanja podredeni ¢vor iz roditeljskog elementa
» setAttribute(name, value) - postavlja vrednost atributa na elementu

» getAttribute(name) - vraéa vrednost atributa sa datim imenom

* focus() - postavlja fokus na element (ako je to mogucde)

» getElementsByTagName(name) - vraca kolekciju svih podredenih elemenata
sa datim nazivom tag-a

» getElementsByClassName(className) - vraca kolekciju svih podredenih
elemenata sa datom klasom

e querySelector(selector) — vraca prvi element koji odgovara CSS selektoru

» querySelectorAll(selector) — vrada kolekciju svih elemenata koji odgovaraju
selektoru

Kolekcije HTMLCollection i NodeList

Kolekcije omogucavaju rad sa grupom elemenata
Kada HTML DOM metoda vrati vise elemenata, rezultat se cuva u kolekciji
Kolekcija je objekat koji sadrzi vise DOM elemenata

Elementima u kolekciji se pristupa pomocu indeksa: kolekcija[0], kolekcija[1], ...

Kolekcije se mogu prolaziti petljom for ili for...of
HTMLCollection

e Sadrzi samo HTML elemente
* AZurira se automatski ako se DOM promeni (Ziva kolekcija)
* Vradaju metode getElementsByTagName() i getElementsByClassName()

Nodelist

* Moze sadrzati razliCite tipove Cvorova
* Ne azurira se automatski — ostaje staticna kopija DOM-a
e vraca metoda querySelectorAll()

Svojstva objekta document

* Objekat document u JavaScriptu predstavlja celokupan HTML dokument
koji je trenutno ucitan u browseru

 document.title - vraca ili postavlja naslov dokumenta
 document.body - vraca referencu na element <body> dokumenta

* document.head - vraca referencu na element <head> dokumenta
 document.URL - vrac¢a URL trenutnog dokumenta

 document.cookie — vraca ili postavlja kolacice povezane s dokumentom

 document.forms — vraca kolekciju svih <form> elemenata u dokumentu

Metode objekta document

* document.getElementByld(id) — vraca element sa datim ID-om, povratna
vrednost je Element

 document.getElementsByClassName(className) — vraca kolekciju
(HTMLCollection) svih elemenata sa datom klasom

* document.getElementsByTagName(tagName) — vraca kolekciju
(HTMLCollection) svih elemenata sa datim nazivom taga

 document.querySelector(selector) — vraca prvi element koji odgovara
datom CSS selektoru (povratna vrednost: Element ili null)

 document.querySelectorAll(selector) — vraca kolekciju svih elemenata koji
odgovaraju CSS selektoru (povratna vrednost: NodelList)

lzvedene klase iz klase HTMLElement

* HTMLDivElement - predstavlja <div> element

* HTMLSpanElement - predstavlja element

e HTMLANnchorElement - predstavlja <a> (link) element

* HTMLImageElement - predstavlja element (sliku)
* HTMLButtonElement - predstavlja <button> element

* HTMLInputElement - predstavlja <input> polje

* HTMLFormElement - predstavlja <form> element

Pristup elementima kroz DOM

<body>
<h2 id="naslov">Naslov</h2>
<p class="tekst">Prvi paragraf</p>
<p class="tekst">Drugi paragraf</p>

<script>
let h2 = document.getElementById("naslov");
let paragrafi = document.getElementsByClassName("tekst");
console.log(h2);
console.log(paragrafi);
</script>

</body>

Pristup elementima kroz DOM

D @ Pristup DOM elementima e _|_

C | ® 127.0.0.1:5500/index.htmi

0 2 @ ¢/> [console Y} &
Naslov _
B) topw © T Filter
Prvi paragraf
paragt <h2 id="naslov">Naslov</h2>
Dmgi paragraf

¥ HTMLCollection(2) i
P @: p.tekst
P 1: p.tekst
length: 2
® [[Prototype]]: HTMLCollection

Live reload enabled.

Console Issues }

— O X
Qv =& - O
© B + - @ X

Default levels w @ 2 i@?
index.html:14

index.html:15

index.html: 46

S

18

Promena sadrzaja HTML elemenata

<body>
<h2 id="naslov">Zdravo svetel!</h2>
<script>
let naslov = document.getElementById("naslov");
naslov.innerText = "Tekst je promenjen!";
naslov.style.color = "blue”;
naslov.style.fontSize = "28px";
</script>
</body>
' © Pristup DOM elementims x |+ - o x
| C | ® 127.00.1:5500/indexhtml @ 17 v= &% -

Tekst je promenjen!

19

<body>
<h2 id="naslov">Naslov stranice</h2>
<p class="tekst">Prvi paragraf</p>
<p class="tekst">Drugi paragraf</p>

<script>
// 1. Dohvatanje po ID-u
let h2 = document.getElementById("naslov");
console.log("getElementById:", h2);

// 2. Dohvatanje po imenu taga
let paragrafi = document.getElementsByTagName("p");
console.log("getElementsByTagName:", paragrafi);

// 3. Dohvatanje po klasi
let tekstovi = document.getElementsByClassName("tekst");
console.log("getElementsByClassName:", tekstovi);

// 4. Primer rada sa kolekcijom
tekstovi[@].style.color = "blue";
tekstovi[l].innerText = "Ovo je izmenjen drugi paragraf."”;
</script>
</body>

20

Dogadaji u JavaScript-u

* Dogadaji (events) su akcije ili promene koje se deSavaju u browseru

* JavaScript moze reagovati na te dogadaje izvrSavanjem funkcije

* Najcesce poticu od korisnika (klik, unos, pomeranje misa...), ali mogu
biti i sistemski (ucitavanje stranice, promena veliCine prozora itd.)

 Svaki dogadaj ima rukovaoca (event handler) — funkciju koja se
izvrSava kada se dogodi dogadaj

Osnovni dogadaji u DOM-u

Kategorija

Dogadaji

Opis

Dogadaji misa

onclick, ondblclick, onmouseover,
onmouseout, onmousedown,
onmouseup

Reaguju na klikove i kretanje misa

Dogadaji tastature

onkeydown, onkeyup, onkeypress

Aktiviraju se kada korisnik pritisne
ili otpusti taster

Dogadaji dokumenta / stranice

onload, onresize, onscroll,
onunload

Odnose se na ucitavanje i promene
prikaza stranice

2] Dogadaji unosa

oninput, onchange

Reaguju na promene vrednosti u
elementima (npr. poljima za unos)

* Dogadaji fokusa

onfocus, onblur

Aktiviraju se kada element dobije ili
izgubi fokus

22

Definisanje dogadaja u JavaScript-u

e Kao HTML atributi
 onclick="funkcija()" — klasican, stariji nacin

* Putem svojstva elementa
* element.onclick = funkcija — definisano u JavaScript-u

* Pomoc¢u metode addEventListener()
* element.addEventListener("click", funkcija) — savremeni, preporuceni nacin

Dogadaji kao HTML atributi

<body>
<h2 onclick="promeniTekst()">Klikni na mene</h2>

<script>
function promeniTekst() {
document.querySelector("h2").innerText = "Klik registrovan!";

}

</script>

</body>

24

Dogadaji putem svojstva elementa

<body>

<h2 id="naslov">Klikni na mene</h2>

<script>
let naslov = document.getElementById("naslov");

naslov.onclick = function() {
naslov.innerText = "Klik registrovan!";

s

</script>

</body>

Definisanje dogadaja pomocu metode
addEventListener()

e Savremen i preporuceni nacin definisanja dogadaja
* Omogucava dodavanje vise funkcija na isti dogadaj

* Dogadaj i funkcija se povezuju pomocu metode:
element.addEventListener("dogadjaj", funkcija)

* Funkcija koja reaguje na dogadaj odnosno hendler dogadaja moze
biti:
* Anonimna funkcija — jednostavna i koristi se samo na tom mestu
* Imenovana funkcija — moze se ponovo koristiti ili kasnije ukloniti

Prtplata na anonimnu funkciju

<body>

<button id="dugme">Klikni me</button>
<script>
let dugme = document.getElementById("dugme");

dugme.addEventListener("click", function() {
alert("Dogadaj pokrenut!");

})s

</script>

</body>

27

Pretplata na imenovanu funkciju

<body>
<button id="dugme">Klikni me</button>
<script>
let dugme = document.getElementById("dugme");

//Anonimna funkcija
dugme.addEventListener("click", function() {
alert("Anonimna funkcija pokrenutal!");

})s

// Imenovana funkcija
function prikaziPoruku() {
alert("Imenovana funkcija pokrenuta!");

}

dugme.addEventListener("click"”, prikaziPoruku);
</script>
</body>

28

Metoda removeEventListener()

<body>
<button id="dugme">Klikni me</button>

<script>
let dugme = document.getElementById("dugme");

function prikaziPoruku() {
alert("Klik registrovan!");
dugme.removeEventListener("click", prikaziPoruku);

}

dugme.addEventListener("click", prikaziPoruku);
</script>

</body>

Uvod u TypeScript

TypeScript

* TypeScript je objektno orijentisan programski jezik
* TypeScript je tipizirani nadskup JavaScript-a

* Kod napisan u TypeScript-u ne moze se izvrsiti direktno, vec se
prevodi u JavaScript

TypeScript

31

Instaliranje TypeScript-a

npm install -g typescript

Skracena verzija komande:
npm i -g typescript

Provera TypeScript verzije

t{sc -v

BX Command Prompt — O ot

Microsoft Windows [Version 16.6.18362.1139]
(c) 2019 Microsoft Corporation. All rights reserved.

C:\Users\goran>tsc -v
Version 3.9.5

C:\Users\goran>_

Kreiranje konfiguracionih fajlova

npminit-y - kreira package.json fajl
tsc --init - kreira tsconfig.json fajl

* Fajl package.json sadrzi osnovne informacije o projektu: naziv, verziju,
autora, skripte i zavisnosti (dependencies)
» Zahvaljujuci fajlu package.json, Node.js i npm znaju koje pakete treba
instalirati i kako pokrenuti projekat
* Fajl tsconfig.json sadrzi podesavanja TypeScript kompajlera
ukljuCujudi:
* gde se nalaze izvorisni .ts fajlovi
» gde se Cuvaju prevedeni .js fajlovi
 koji standard JavaScript-a da koristi (ES6, ESNext itd.)
 da li se dozvoljavaju stroge provere tipova

Prikaz terminala

® ps C:\Users\goran\Desktop\it@5> npm init -y
Wrote to C:\Users\goran\Desktop\ites\package.json:

{
"name": "ites",
"version": "1.e.0",
"description™: ™",
"main”: "index.js",
"scripts™: {

® ps C:\Users\goran\Desktop\ites> tsc --init

message TS6071: Successfully created a tsconfig.json file.

PS C:\Users\goran\Desktop\ites> D

35

Tipovi podataka u TypeScript-u

e any — predstavlja bilo koji tip podataka; iskljuCuje proveru tipova.
* number — celi i realni brojevi (TypeScript ne razlikuje int i float)

e string — tekstualni podaci, sekvenca Unicode karaktera unutar
navodnika ("tekst" ili 'tekst’).

* boolean — logicka vrednost, moze biti true ili false

* void — koristi se kao povratni tip funkcija koje ne vracaju vrednost
* null — oznacava objekat koji namerno nema vrednost

* undefined — vrednost dodeljena neinicijalizovanoj promenljivoj

Upotreba okruzenja VS Code

 Kreira se fajl sa ekstenzijom .ts npr. primer01.ts
U fajl se upisuje TypeScript kod

* Kompaijlira se u terminalu pomocu komande:
tsc primer01.ts

* Dobijeni JavaScript fajl se izvrsava pomocu Node-a:
node primer01.js

Deklaracija i inicijalizacija promenljivih

let ime: string; // deklaracija promenljive
let prezime: string = 'Markovic'; // deklaracija i inicijalizacija
const grad: string = 'Beograd’; // konstanta (ne moze se ponovo dodeliti vrednost)

let osoba = "Marko'; // tip se automatski odreduje (string)

38

TypeScript moduli

* Fajl u TypeScript-u se smatra skriptom ako nema export ili import
naredbu, u tom slucaju njegov kod ima globalni opseg

* Fajl se tretira kao modul samo ako sadrzi export iliimport

e Kod unutar modula ima svoj lokalni opseg — promenljive, funkcije i klase
nisu automatski dostupne u drugim fajlovima

* Da bi kod iz jednog fajla bio vidljiv u drugom, mora se izvesti pomocu
export i zatim uvesti pomocu import

* Modul se kreira pomocu kljucne reci export, a koristi pomocu import

* Moduli omogucavaju organizovan, izolovan i lako odrziv kod, bez
konflikata imena izmedu fajlova

TypeScript promenljive

export {}; // ¢ini fajl modulom, sprecava globalni opseg

let ime: string = 'Marko';
let a: number = 50;

let b: number = 42.5;

let suma: number = a + b;

console.log('Ime:"', ime);
console.log('Prvi broj:', a);
console.log('Drugi broj:', b);
console.log('Suma je:', suma);

® pS C:\Users\goran\Desktop\ite5> tsc primere2
® pS C:\Users\goran\Desktop\it@5> node primere2
Ime: Marko
Prvi broj: 5@
Drugi broj: 42.5
Suma je: 92.5
PS C:\Users\goran\Desktop\ites> D

40

Operatori u TypeScript-u

e TypeScript koristi iste operatore kao JavaScript
* Nema novih operatora niti promena u njihovom ponasanju
e Sve operacije se izvrsavaju na isti nac¢in kao u JavaScript-u

e Jedina razlika je sto TypeScript omogucava proveru tipova prilikom
koris¢enja operatora

* Time sprecCava greske koje bi JavaScript dozvolio prilikom izvrSavanja

* Ako se operator koristi nad nekompatibilnim tipovima,
TypeScript to moze prijaviti tokom kompajliranja, pre nego sto se kod
izvrsi

Operatori u TypeScript-u

let x: number
let y: string

|l16|l;

let rezultatl:number = x + y; // GresSka: nije dozvoljeno sabirati number 1 string

let rezultat2 = x + Number(y); //

Ispravno: eksplicitna konverzija tipa

42

TypeScript funkcije

* Funkcije u TypeScript-u rade kao u JavaScript-u,ali omogucavaju
definisanje tipova za:
* parametre funkcije — vrednosti koje funkcija prima
e povratnu vrednost — vrednost koju funkcija vraca pomocu naredbe return

* TypeScript proverava da li funkcija prima i vraca vrednosti
odgovarajucih tipova

TypeScript funkcije

export {}; // fajl je modul

function saberil(x: number, y: number): number {
return x + y,;

}

function saberi2(x: number, y: number): void {
console.log('Rezultat je:', x + y);

¥

let rezultat: number = saberil(5, 6.1);
console.log(rezultat);

saberi2(6.1, 7.8);

Funkcija sa opcionim parametrom

e Opcionim parametrima u TypeScript-u se oznacavaju parametri koji
nisu obavezni pri pozivu funkcije

e Oznacavaju se znakom ? iza imena parametra
* Ako se opcioni parametar ne prosledi, njegova vrednost je undefined

* U TypeScript-u opcioni parametar (?) mora biti definisan posle svih
obaveznih parametara

Funkcija sa opcionim parametrom

export { };

function prikazi(ime: string, prezime: string, email?: string): void
{
console.log('Ime:"', ime);
console.log('Prezime:', prezime);
if (email != undefined) {
console.log('Email:’', email);

}

console.log("' ");

}
prikazi('Marko', 'Markovic');
prikazi('Jovan', 'Jovanovic', 'jovan@gmail.com');

Ime: Marko
Prezime: Markovic

Ime: Jovan
Prezime: Jovanovic
Email: jovan@gmail.com

46

Podrazumevana vrednost parametra funkcije

export { };

function racunaj(cena: number, popust: number = 0.2): void {
let konacnaCena = cena * (1 - popust);
console.log('Konacna cena:', konacnaCena);

}

racunaj(1000);

racunaj(1ee0, 0);

racunaj (1000, 0.3);

goran@DESKTOP-ESBO9HU8 MINGW®64 ~/Desktop/ITO5
S node primer07

Konacna cena: 800

Konacna cena: 1000

Konacna cena: 700

Anonimna funkcija

* Anonimna funkcija je funkcija bez imena

* DefiniSe se unutar izraza i moze se dodeliti promenljivoj, proslediti
kao argument ili vratiti iz druge funkcije

export{};

let zbir = function (a: number, b: number): void {
console.log('Zbir je:', a + b);
¥

zbir(5, 6);

Lambda izrazi za definisanje anonimnih funkcija

* Lambda (ili arrow) funkcije su skraceni oblik anonimnih funkcija
 Koriste operator => umesto kljucne reci function

* Najcesce se koriste kada je funkcija kratka ili se prosleduje kao
argument

Lambda izrazi za definisanje anonimnih funkcija

export{};

let prikaziVreme = ()=> new Date().tolLocaleTimeString();
let vreme = prikaziVreme();

console.log(vreme);

let uvecajlo = (x:number)=>x+10;

let r:number = uvecajlo(2);

console.log("rezultat”,r);

goran@DESKTOP-ESB9HU8 MINGW64 ~/Desktop/ITO5
S tsc primer09

goran@DESKTOP-ESB9HU8 MINGW64 ~/Desktop/ITO5
S node primer09

20:34:15

rezultat 12

Nizovi

export{}; const brojevi: Array<number> = [1,3,5,7,9];

const brojevi:number[] = [1,3,5,7,9];

//for
for (let i = 0; 1 < brojevi.length; i++) {
console.log(brojevi[i]);

}
//for...in
console.log('-------------- OF

for (const i in brojevi) {
console.log(i,brojevi[i]);

}
console.log('-------------- s
//for...of

for (const i of brojevi) {
console.log(1i);

}

//forEach

console.log('-------------- DF

brojevi.forEach(function (x:number) {
console.log(x);

})s 51

Filtriranje niza — funkcija filter

export{};
const a:number[] = [12,5,8,130,44];

// izdvajanje brojeva vecih od 20
const b = a.filter(x=>x>20);

for (const i of b) {
console.log(i);

}

S node primerl1
130
44

Transformacija niza — funkcija map

export{};
const a:number[] = [12,5,8,130,44];
const ¢ = a.map(x=>x*x);

for (const i in c¢) {
console.log(i,c[i]);

}

S node primerl2
0144

125

264

3 16900

4 1936

Typescript klase

* TypeScript koristi klase kako bi omogucio upotrebu OOP principa kao sto
su:apstrakcija, enkapsulacija, nasledivanje i polimorfizam.
* Klasa se sastoji od:
» polja (properties) — podaci koje objekat cuva
 metoda (methods) — funkcije koje objekat izvodi
e konstruktora (constructor) — funkcija koja se poziva pri kreiranju objekta

* Podrazumevano, polja klase su public, osim ako se ne navede drugaciji
modifikator (private, protected)

e Klase u TypeScript-u se kompajliraju u JavaScript funkcije — time su
potpuno kompatibilne sa starijim verzijama JS-a

» Koriscenjem klasa, TypeScript uvodi tipizaciju i strukturu u JavaScript kod

Klase

export{};
class Osoba {
ime:string;
prezime: string;
starost:number;
constructor(ime:string, prezime: string, starost:number) {
this.ime = ime;
this.prezime = prezime;

this.starost = starost;
}
stampajl():void
{
console.log('Ime',this.ime);
console.log('Prezime', this.prezime);
console.log('Starost',this.starost);
}
stampaj2():string
{
return this.ime + " " + this.prezime;
}

}

const osl = new Osoba('Marko', "Markovic',25);
osl.stampajl();
console.log(osl.stampaj2());

S node primer13
Ime Marko
Prezime Markovic
Starost 25

Marko Markovic

Automatsko dodeljivanje parametara
konstruktora svojstvima klase

export { };
class Osoba {
constructor(public ime: string, public prezime: string, public starost: number) {
}
stampaj(): void {
console.log(this.ime, this.prezime, this.starost);
}
}

const osl = new Osoba('Marko', 'Markovic', 25);
osl.stampaj();

Klasa sa privatnim poljima

primerl5.ts

export class Osoba {
constructor(private ime: string, private prezime: string, private starost: number) {
}
stampaj(): void {
console.log(this.ime, this.prezime, this.starost);

}

primerl6.ts

import { Osoba } from "./primerl5";

const osl = new Osoba('Marko', 'Markovic',25);
osl.stampaj();

Definisanje gettera/settera

export { };

class Osoba {
private _ime: string = '';
//getter
public get ime(): string {

return this. ime;

}

//setter
public set ime(novoIme: string) {
if (novoIme.length > 10) {
console.log('Ime ne moze imati vise od 10 karaktera');
return;
}
this._ime = novoIme;
}
}

const os = new Osoba();
os.ime = 'Marko23133435346575474";

console.log(os.ime);

tsc --target es5 primerl7

TypeScript se kompaijlira u ES5 ili noviji standard da bi get i set radili korektno

Interfejsi

* Interfejs u TypeScript-u definise skup svojstava i metoda koje neki objekat ili klasa mora da
poseduje, ali ne sadrzi njihovu implementaciju

» Kaze Sta objekat mora da ima, ali ne kako to treba da bude implementirano

* Moze se koristiti za:
* definisanje tipa promenljive
e opisivanje strukture objekata

» definisanje “ugovora” koji klase treba da slede
* Interfejs sadrzi samo potpis svojstava i metoda (bez implementacije)
* Klasa koja implementira interfejs mora da obezbedi implementaciju svih definisanih ¢lanova.

* TypeScript kompajler ne prevodi interfejse u JavaScript — oni postoje samo u fazi provere tipova
(duck typing).

Interfejs - primer

export{};
interface IOsoba {
id: number; const os1 = {
ime: string; tsc id: 1
prezime: string; >} ime- iMarko",
ionst 0s1: TOsoba = { | prezime: "Markovic"
id: 1, g
ime: "Marko",
prezime: "Markovic" Js fajl
¥

.ts fajl

60

Interfejs sa opcionim i read-only svojstvima

export {};
interface IOsoba {
readonly id: number; // svojstvo koje se ne moze menjati
ime: string;
prezime: string;
email?: string; // opciono svojstvo

}

const osl: IOsoba = {

id: 1,

ime: "Marko",

prezime: "Markovic"
}s
// 1ispis
console.log(osl);
// pokuSaj izmene readonly polja
// osl.id = 2; // GreSka: Cannot assign to 'id' because it is a read-only property
// opciono svojstvo se moze dodati kasnije
osl.email = "marko@gmail.com";
console.log(osl);

Interfejs kao tip parametra funkcije

export{};

interface IOsoba {
id: number;
ime: string;
prezime: string;

}

function Stampaj(os: IOsoba) {
console.log(os.id, os.ime, os.prezime);

}

const osl= {
id: 1,
ime: "Marko",
prezime: "Markovic",
adresa: "Cara Dusana 22"
¥
Stampaj(osl);

Klasa bazirana na interfejsu

interface IOsoba {
ime: string;
prezime: string;
}
class Student implements IOsoba {
// 'ime' 1 'prezime' su deo interfejsa,
constructor(
public ime: string,
public prezime: string,
public smer: string

) {}

‘smer' je dodatno svojstvo

stampaj(): void {
console.log('Ime:"', this.ime);
console.log('Prezime:', this.prezime);
console.log('Smer:', this.smer);

}
}

const st = new Student("Marko", "Markovic"

, "Informacioni sistemi");
st.stampaj();

63

Pitanje 1

Koji je osnovni objekat DOM stabla?

a. Element

b. Node
c. Attribute

Odgovor: b

Pitanje 2

Koja od sledecih klasa nasleduje klasu Element i predstavlja osnovu za sve HTML
elemente?

a. Node
b. HTMLElement
c. Document

Odgovor: b

Pitanje 3

Sta je document objekat u JavaScript-u?

a. Objekat koji predstavlja samo <body> deo stranice
b. Objekat koji predstavlja samo <head> deo stranice
c. Objekat koji predstavlja ceo HTML dokument

Odgovor: c

Pitanje 4

Kojim svojstvom pristupamo HTML sadrzaju elementa?

a. innerText
b. innerHTML
c. outerHTML

Odgovor: b

Pitanje 5

Kojom se metodom pristupa elementu na osnovu ID atributa u DOM stablu??

a. document.getElementByld("id")
b. document.getElement("id")
c. document.querySelectorAll("id")

Odgovor: a

Pitanje 6

Prevodenje TypeScript koda koji se nalazi u fajlu primer01.ts u JavaScript fajl
primer01.js vrsi se koris¢enjem sledece komande:

a. compile primer0O1
b. tsc primerO1l
c. node primer0O1

Odgovor: b

Pitanje /

Polja u TypeScript klasama imaju podrazumevani modifikator pristupa:

a. public
b. private
c. protected

Odgovor: a

Pitanje 8

Konstruktor TypeScript klase je funkcija koja ima:

a. istoime kao i klasa
b. ime constructor
Cc. ime get

Odgovor: b

Pitanje 9

Unutar osoba.ts fajla definisan je samo interfejs IOsoba. Sta se dobija
izvrSavanjem komande: tsc osoba

a. osoba.js fajl koji je prazan

b. osoba.js fajl koji sadrzi interfejs

c. osoba.js fajl koji sadrzi klasu

Odgovor: a

Pitanje 10

Koji uslov mora da bude ispunjen da bi se TypeScript fajl tretirao kao modul?

a. Da sadrzi definiciju klase
b. Da u njemu postoji import ili export naredba
c. Daima ekstenziju .ts

Odgovor: b

	Slide 1: Objektni model dokumenta (DOM)
	Slide 2: HTML DOM
	Slide 3: HTML DOM stablo
	Slide 4: Objekat Node
	Slide 5: Svojstva objekta Node
	Slide 6: Vrste Node objekata
	Slide 7: Objekat Element
	Slide 8: Svojstva objekta Element
	Slide 9: Metode objekta Element
	Slide 10: Objekat HTMLElement
	Slide 11: Svojstva objekta HTMLElement
	Slide 12: Metode objekta HTMLElement
	Slide 13: Kolekcije HTMLCollection i NodeList
	Slide 14: Svojstva objekta document
	Slide 15: Metode objekta document
	Slide 16: Izvedene klase iz klase HTMLElement
	Slide 17: Pristup elementima kroz DOM
	Slide 18: Pristup elementima kroz DOM
	Slide 19: Promena sadržaja HTML elemenata
	Slide 20
	Slide 21: Događaji u JavaScript-u
	Slide 22: Osnovni događaji u DOM-u
	Slide 23: Definisanje događaja u JavaScript-u
	Slide 24: Događaji kao HTML atributi
	Slide 25: Događaji putem svojstva elementa
	Slide 26: Definisanje događaja pomoću metode addEventListener()
	Slide 27: Prtplata na anonimnu funkciju
	Slide 28: Pretplata na imenovanu funkciju
	Slide 29: Metoda removeEventListener()
	Slide 30: Uvod u TypeScript
	Slide 31: TypeScript
	Slide 32: Instaliranje TypeScript-a
	Slide 33: Provera TypeScript verzije
	Slide 34: Kreiranje konfiguracionih fajlova
	Slide 35: Prikaz terminala
	Slide 36: Tipovi podataka u TypeScript-u
	Slide 37: Upotreba okruženja VS Code
	Slide 38: Deklaracija i inicijalizacija promenljivih
	Slide 39: TypeScript moduli
	Slide 40: TypeScript promenljive
	Slide 41: Operatori u TypeScript-u
	Slide 42: Operatori u TypeScript-u
	Slide 43: TypeScript funkcije
	Slide 44: TypeScript funkcije
	Slide 45: Funkcija sa opcionim parametrom
	Slide 46: Funkcija sa opcionim parametrom
	Slide 47: Podrazumevana vrednost parametra funkcije
	Slide 48: Anonimna funkcija
	Slide 49: Lambda izrazi za definisanje anonimnih funkcija
	Slide 50: Lambda izrazi za definisanje anonimnih funkcija
	Slide 51: Nizovi
	Slide 52: Filtriranje niza – funkcija filter
	Slide 53: Transformacija niza – funkcija map
	Slide 54: Typescript klase
	Slide 55: Klase
	Slide 56: Automatsko dodeljivanje parametara konstruktora svojstvima klase
	Slide 57: Klasa sa privatnim poljima
	Slide 58: Definisanje gettera/settera
	Slide 59: Interfejsi
	Slide 60: Interfejs - primer
	Slide 61: Interfejs sa opcionim i read-only svojstvima
	Slide 62: Interfejs kao tip parametra funkcije
	Slide 63: Klasa bazirana na interfejsu
	Slide 64: Pitanje 1
	Slide 65: Pitanje 2
	Slide 66: Pitanje 3
	Slide 67: Pitanje 4
	Slide 68: Pitanje 5
	Slide 69: Pitanje 6
	Slide 70: Pitanje 7
	Slide 71: Pitanje 8
	Slide 72: Pitanje 9
	Slide 73: Pitanje 10

