Algoritmi sortiranja -2

Spajanje sortiranih nizova u novi sortirani niz

* Neka je al[] sortirani niz duzine nl
* Neka je a2[] sortirani niz duzine n2

* Potrebno je kreirati novi niz temp[] duzine n1+n2 od elemenata niza
all] i a2[] tako da bude sortiran

Spajanje sortiranih nizova

9 |11 [15| 31 | 39| 43

2 | 10|17 |29 | 40| 45 | 67 | 79

0 1 2 3 4 5 6 9 10 11 12

Spajanje sortiranih nizova

9 11] 15] 31§ 39] 43

a2 =1

2 (10| 17| 29] 40| 45] 67] 79 a2[0] <al[0]

temp[0] = a2[0]

j=1; inkrementira se brojac niza a2
temp k=1 k_l

Spajanje sortiranih nizova

al

=

a2

temp

al[0]<a2[1]

temp[1] = a1[0]

i=1; inkrementira se brojac prvog niza

k=2; inkrementira se brojac rezultujuceg niza

11 | 15| 31| 39| 43

r 2 3 4 5
=1
10 [17] 29| 40| 45| 67| 79

1 2 3 4 5 6 7

k=2
9
1 2 3 4 5 6 17 10 11 12 13

Funkcija Merge

koja spaja sortirane nizove

public static int[] Merge(int[] al, int[] a2)

{

int n1
int n2

al.Length;
a2.Length;

int[] temp = new int[nl + n2];
inti=0, j=0, k =0

while (i<nl && j<n2)

{
if (al[i] <a2[j])
{
temp[k++] = al[i++];
}
else
{
temp[k++] = a2[j++];
}
}

//a2 se zavrsio kopiraj preostale elemente niza al
while (i<nl)
{

}

temp[k++] = al[i++];

//al se zavrsio kopiraj preostale elemente niza a2
while (j<n2)
{

}

temp[k++] = a2[j++];

return temp;

Pomocne funkcije

static int[] KreirajSortiraniNiz(int n)
{

int[] x = new int[n];

for (int i = 0; i < n; i++)

{
x[1i] = rnd.Next(1, 101); // od 1 do 100
}
Array.Sort(x);
return Xx;

public static Random rnd = new Random();
// Generator je staticko polje klase Program

static void PisiNiz(int[] x)

{

for (int 1 = @; i < x.Length; i++)

{
}

Console.WritelLine();

Console.Write(x[i] + "\t");

static void Linija(int n)
{

//iscrtava liniju duzine n na konzoli
Console.WriteLine("".PadRight(n, ' "));

Poziv funkcije za spajanje nizova

static void Main(string[] args)
{
int[] a1l
int[] a2

KreirajSortiraniNiz(4);
KreirajSortiraniNiz(5);

int[] temp = Merge(al,a2);
PisiNiz(al);

Linija(70);

PisiNiz(a2);

Linija(70);

PisiNiz(temp);

Console.ReadlLine();

Rezultat spajanja nizova

Algoritam Merge Sort

* Niz se rekurzivno deli na dva podniza sve dok duzina svakog podniza
ne postane 1

* Podnizovi duzine 1 smatraju se vec sortiranima

* Sortirani podnizovi se zatim spajaju (merge), pri cemu se uvek bira
manji od trenutnih elemenata

* Postupak spajanja se ponavlja dok se ne dobije jedan potpuno
sortiran niz

Faza podele (Divide)

[23 7 14 9 30 11]

/ \
[23 7 14] [9 38 11]
/ \ ! \
[23 7] [14] [9 30] [11]
/ % / %

[23] [7] [9] [30]

11

Spajanje leve polovine

/
[23 7 14]
/ \
[23 7] [14]
! \
[23] [7]

[23] + [7] = [7 23]

[7 23] + [14] = [7 14 23]

12

Spajanje desne polovine

\

[9 30 11]
/ \
[9 30] [11]
/ \
9] [30]

[9 38] + [11] = [9 11 3@]

13

Finalno spajanje cele leve | desne polovine

[7 9 11 14 23 30]

14

[47 4 15 35 52 18 56 5 12 51 9]

/ Y
[47 4 15 35 52 18] [56 5 12 51 9]
/ Y / \
[47 4 15] [35 52 18] [56 5 12] [51 9]
/ \ / \ / \ /A
[47 4] [15] [35 52] [18] [56 5] [12] [51] [9]
!\ P /A
[47] [4] [351 [52] [56]1 [5]
--------- MERGE FAZA (spajanje) ------------ Desna grana:
[56] + [5] = [5 56]
[47] + [4] = [4 47] [5 56] + [12] = [5 12 56]
[4 47] + [15] = [4 15 47] [51] + [9] = [9 51]
[35] + [52] = [35 52] [5 12 56] + [9 51] = [5 9 12 51 56]
[35 52] + [18] = [18 35 52]
Spajanje leve gramne: mmmmeme- FINALNO SPAJANJE -----------.

[4 15 47] + [18 35 52] = [4 15 18 35 47 52]
[4 15 18 35 47 52] + [5 9 12 51 56]
- [4 59 12 15 18 35 47 51 52 56]

15

Adaptirana funkcija Merge() — 1. deo

// Spaja dva sortirana niza
// Spaja dva sortirana podniza x[1l..m] i x[m+l..r]
static void Merge(int[] x, int 1, int m, int r)

{
// Duzine podnizova
intnl =m-1+ 1;
int n2 =r - m;

// Privremeni nizovi
int[] L = new int[nl];
int[] R = new int[n2];

// Kopiranje podataka iz glavnog niza x u privremene nizove L i R
int i,j;

// Kopiranje prvog podniza x[l..m] u L
for (i =0; i <nl; ++i)

{
}

L[i]l = x[1 + il;

// Kopiranje drugog podniza x[m+l..r] u R
for (j =0; j < n2; ++j)
{

}

R[] = x[m + 1 + j];

16

Adaptirana funkcija Merge() — 2. deo

// Resetovanje indeksa i i j na 0 kako bismo ih Koristili za poredenje elemenata

// Indeks za prvi podniz L
i=0;

// Indeks za drugi podniz R
j =0

// Indeks za glavni niz x
int k = 1;

// Spajanje privremenih nizova nazad u glavni niz x[1l..r]
while (i < nl & j < n2)

{
// Poredenje elemenata iz L i R i smeStanje manjeg elementa u x
if (L[i] <= R[FD)
{
x[k] = L[i];
i++;
}
else
{
x[k] = R[jl;
j+t;
}
// Pomeranje indeksa u glavnom nizu
K++;
}

17

Adaptirana funkcija Merge() — 3. deo

// Kopiranje preostalih elemenata iz L, ako postoje
while (i < nl)

{
x[k] = L[i];
i++;
K++;

}

// Kopiranje preostalih elemenata iz R, ako postoje
while (j < n2)

{
x[k] = RL[jl1;
Jt+t;
K++;

}

18

Rekurzivna funkcija Sort sa parametrima

static void Sort(int[] x, int 1, int r)
{
// U predstavlja pocetak niza koji se trenutno sortira
// r predstavlja kraj niza koji se trenutno sortira
if (L < r)
{
// Pronalazenje srednjeg indeksa
intm=1+ (r-1) / 2;

// Rekurzivno sortiranje prve i druge polovine
Sort(x, 1, m);
Sort(x, m + 1, r);

// Spajanje sortiranih polovina
Merge(x, 1, m, r);

19

Funkcija MergeSort()

public static void MergeSort(int[] x)
{
int n = x.Length;
// Pokretanje merge sort algoritma
Sort(x, 0, n - 1);

20

Pomocna funkcija

static int[] KreirajNiz(int n)
{
Random rnd = new Random();
int[] x = new int[n];
for (int 1 = 0; i < n; i++)

{

x[i] = rnd.Next(1, 101); // od 1 do 100
}
return x;

Poziv funkcije MergeSort()

static void Main()

{
int[] x = KreirajNiz(10);
Console.WriteLine("Niz pre sortiranja:");
PisiNiz(x);
Linija(70);
MergeSort(x);
Console.WriteLine("\nNiz posle sortiranja:");
PisiNiz(x);
Console.ReadLine();

CA\Users\goran\source\repr X

Niz pre sortiranja:

Niz posle sortiranja:
14 15 18

Analiza MergeSort algoritma

* Niz od n elemenata se pri svakom koraku deli na dva dela, ukupno
priblizno log, n puta

* Nakon deljenja niz log, n puta dobijamo n podnizova duzine 1

* Vremenska slozenost algoritma iznosi O(n log, n) i ista je u najboljem,
najgorem i prosecnom slucaju

* Najbolji slu¢aj — niz je vec¢ sortiran (ali slozenost ostaje ista)
* Najgori slucaj — niz je potpuno nesortiran (slozenost opet ista)
* MergeSort ne zavisi od rasporeda elemenata

Quick Sort algoritam

e Efikasan algoritam za sortiranjeTehnika ,,podeli pa vladaj”

* Ceo niz x[] se deli na dve particije: levu i desnu

* Svi elementi leve particije su manji od elementa koji se zove pivot
* Svi elementi desne particije su veci ili jednaki od pivot elementa

* Inicijalno se za pivot moze uzeti bilo koji element niza, npr. prvi:
pivot = x[0]

» Svakim prolaskom kroz algoritam odreduje se tacna pozicija
pivotaleva i desna particija se zatim ponovo dele na nove particije na
isti nacin

Podela niza i podniza na particije

static int Particija(int[] x, int low, int high)

* low parametar oznacava pocetni indeks opsega niza koji delimo na
particije. U pocetku je low =0.

* high parametar oznacava krajnji indeks opsega niza opsega niza koji
delimo na particije. Na pocetku high =n-1

e U funkciji Particija, pivot se obicno bira kao element na poziciji low

int pivot = x[low];
int left = low + 1;
int right = high;

Indeksi left i right

* Pivot se poredi sa elementima pomocu left i right indeksa
* Tokom particionisanja, petlja povecava index left dok ne pronade element veci od pivota
e Petlja smanjuje index right dok ne pronade element manji od pivota

» Kada se petlja zavrsi, index left ¢e biti pozicioniran iza poslednjeg elementa manjeg od
pivota

» Kada se petlja zavrsi, index right ¢e biti pozicioniran ispred poslednjeg elementa veceg od
pivota.

while (true)

{
while (left <= right && x[left] < pivot)
{

}

left++;

while (left <= right && x[right] > pivot)
{

}

right--;

Razmena elemenata na pozicijama left i right

* Ako je element na poziciji left manji ili jednak od elementa na poziciji
right, to znaci da smo pronasli par elemenata koji treba razmeniti

 Razmenjujemo ove elemente kako bismo postigli delimi¢no sortiranje
u odnosu na pivot

if (left <= right)
{
// razmeni elemente left i right
int temp = x[left];
x[left] = x[right];
x[right] = temp;

Indeks left preskace indeks right

* Kada indeks left postane veci od indeksa right to znaci da smo dosli do
tacke gde je left "preskocio" preko right

* Odnosno da smo prosli kroz ceo niz i postavili elemente u ispravan redosled
u odnosu na pivot

e Sada se pivot razmenjuje sa elementom na poziciji right jer znamo da je
right indeks sada postavljen tacno tamo gde treba biti pivot

else

{

//razmena pivota sa elementom na poziciji right
int temp = x[low];
x[low] = x[right];
x[right] = temp;
// vrati index pivota
return right;

Funkcija za particionisanje niza

static int Particija(int[] x, int low, int high)
{

int pivot = x[low];

int left = low + 1;

int right = high;

while (true)

{
while (left <= right && x[left] < pivot)
{
left++;
}
while (left <= right && x[right] > pivot)
{
right--;
}
if (left <= right)
{
// razmeni elemente left i right
int temp = x[left];
x[left] = x[right];
x[right] = temp;
}
else
{
//razmena pivota sa elementom na poziciji right
int temp = x[low];
x[low] = x[right];
x[right] = temp;
// vrati index pivota
return right;
}
}

29

Quick Sort algoritam

static void QuickSort(int[] x, int low, int high)

{
if (low < high)

{
int pivotIndex = Particija(x, low, high);
QuickSort(x, low, pivotIndex - 1);
QuickSort(x, pivotIndex + 1, high);

}

Quick Sort algoritam

* Ako low nije vece ili jednako high, to znaci da podniz ima vise od jednog
elementa i da ga treba dalje sortirati

* Ako low postane vece od high, to znaci da podniz ima jedan ili nijedan
element i ne zahteva dalje sortiranje

* Funkcija Particija bira pivot, podeli niz na dva dela (levo sa elementima
manjim od pivota, desno sa elementima vecim od pivota) i vraca indeks gde
se pivot trenutno nalazi

* Nakon particionisanja, rekurzivno pozivamo QuickSort funkciju za levi
podniz, tj. podniz sa elementima manjim od pivota :

* QuickSort(x, low, pivotindex - 1);

* Slicno tome, rekurzivno pozivamo QuickSort funkciju za desni podniz, tj.
podniz sa elementima vecim od pivota:

* QuickSort(x, pivotindex + 1, high);

Poziv funkcije QuickSort()

static void Main()

{
int[] x = {12, 4, 5, 6, 7, 3, 1, 15 };

Console.WriteLine("Originalni niz:");
StampajNiz(x);

QuickSort(x, 0, x.Length - 1);

Console.WriteLine("\nSortirani niz:");
StampajNiz(x);

Console.ReadLine();

Poziv funkcije QuickSort()

CA\Users\goran\source\rep: X + | -

Originalni niz:
12 4 56 73 1 15

Sortirani niz:
1345686712 15

Karakteristike Quick Sort algoritma

* Kada se dobro implementira, u praksi je uglavhom brzi od Merge Sort
algoritma

* ProseCna vremenska slozenost je O(n log n) u najboljem i u prosecnom
slucaju
* Najbolji slucaj nastaje kada pivot uvek deli niz na dva priblizno jednaka dela

* Najgora vremenska sloZenost je O(n?) ako je pivot uvek najmaniji ili najveci
element (vrlo losa podela niza)

e Za vec sortirani ili obrnuto sortirani niz, najgori slucaj se dogada ako se
pivot bira kao prvi ili poslednji element, jer tada svaka podela pravi:

* jednu praznu particiju
 jednu particiju sa svim preostalim elementima
Sto vodi ka ukupno n + (n-1) + (n-2) + ... + 1 = n%/2 operacija

Pitanje 1

Algoritam Quick Sort je:

a. iterativni algoritam
b. rekurzivni algoritam

Odgovor: b

Pitanje 2

Tehnika podeli pa vladaj nije karakteristicna za sledeci algoritam soriranja:

a. Merge Sort
b. Selection sort
c. Quick sort

Odgovor: b

Pitanje 3

ProseCna vremenska slozenost Quick Sort algoritma je:

a. 0O(n?)
b. O(n)
c. O(nlogn)

Odgovor: c

Pitanje 4

Kod Quick Sort algoritma svi elementi desne particije su:
a. veci od pivot elementa

b. manji od pivot elementa
c. mogu biti i veci i manji od pivot elementa

Odgovor: a

Pitanje 5

Koji algoritam koristi pristup "podeli pa vladaj" i spaja sortirane podnizove u jedan
sortirani niz?

a. QuickSort
b. MergeSort
c. BubbleSort

Odgovor: b

Pitanje 6

Koji algoritam koristi pivot za particionisanje niza na dva dela i rekurzivno sortira
podnizove?

a. QuickSort
b. MergeSort
c. InsertionSort

Odgovor: a

	Slide 1: Algoritmi sortiranja -2
	Slide 2: Spajanje sortiranih nizova u novi sortirani niz
	Slide 3: Spajanje sortiranih nizova
	Slide 4: Spajanje sortiranih nizova
	Slide 5: Spajanje sortiranih nizova
	Slide 6: Funkcija Merge() koja spaja sortirane nizove
	Slide 7: Pomoćne funkcije
	Slide 8: Poziv funkcije za spajanje nizova
	Slide 9: Rezultat spajanja nizova
	Slide 10: Algoritam Merge Sort
	Slide 11: Faza podele (Divide)
	Slide 12: Spajanje leve polovine
	Slide 13: Spajanje desne polovine
	Slide 14: Finalno spajanje cele leve i desne polovine
	Slide 15
	Slide 16: Adaptirana funkcija Merge() – 1. deo
	Slide 17: Adaptirana funkcija Merge() – 2. deo
	Slide 18: Adaptirana funkcija Merge() – 3. deo
	Slide 19: Rekurzivna funkcija Sort sa parametrima
	Slide 20: Funkcija MergeSort()
	Slide 21: Pomoćna funkcija
	Slide 22: Poziv funkcije MergeSort()
	Slide 23: Analiza MergeSort algoritma
	Slide 24: Quick Sort algoritam
	Slide 25: Podela niza i podniza na particije
	Slide 26: Indeksi left i right
	Slide 27: Razmena elemenata na pozicijama left i right
	Slide 28: Indeks left preskače indeks right
	Slide 29: Funkcija za particionisanje niza
	Slide 30: Quick Sort algoritam
	Slide 31: Quick Sort algoritam
	Slide 32: Poziv funkcije QuickSort()
	Slide 33: Poziv funkcije QuickSort()
	Slide 34: Karakteristike Quick Sort algoritma
	Slide 35: Pitanje 1
	Slide 36: Pitanje 2
	Slide 37: Pitanje 3
	Slide 38: Pitanje 4
	Slide 39: Pitanje 5
	Slide 40: Pitanje 6

