
Algoritmi sortiranja -2

Spajanje sortiranih nizova u novi sortirani niz

• Neka je a1[] sortirani niz dužine n1

• Neka je a2[] sortirani niz dužine n2

• Potrebno je kreirati novi niz temp[] dužine n1+n2 od elemenata niza
a1[] i a2[] tako da bude sortiran

2

Spajanje sortiranih nizova

3

Spajanje sortiranih nizova

a2[0] <a1[0]
temp[0] = a2[0]
j=1; inkrementira se brojač niza a2
k=1

4

Spajanje sortiranih nizova

a1[0]<a2[1]
temp[1] = a1[0]
i=1; inkrementira se brojač prvog niza
k=2; inkrementira se brojač rezultujućeg niza

5

Funkcija Merge() koja spaja sortirane nizove

public static int[] Merge(int[] a1, int[] a2)
{
 int n1 = a1.Length;
 int n2 = a2.Length;

 int[] temp = new int[n1 + n2];

 int i = 0, j = 0, k = 0;

 while (i<n1 && j<n2)
 {
 if (a1[i] <a2[j])
 {
 temp[k++] = a1[i++];
 }
 else
 {
 temp[k++] = a2[j++];
 }
 }
 //a2 se zavrsio kopiraj preostale elemente niza a1
 while (i<n1)
 {
 temp[k++] = a1[i++];
 }

 //a1 se zavrsio kopiraj preostale elemente niza a2
 while (j<n2)
 {
 temp[k++] = a2[j++];
 }

 return temp;
} 6

Pomoćne funkcije
static int[] KreirajSortiraniNiz(int n)
{
 int[] x = new int[n];

for (int i = 0; i < n; i++)
 {

x[i] = rnd.Next(1, 101); // od 1 do 100
 }
 Array.Sort(x);
 return x;
}

static void PisiNiz(int[] x)
{

for (int i = 0; i < x.Length; i++)
 {
 Console.Write(x[i] + "\t");
 }
 Console.WriteLine();
}

static void Linija(int n)
{

//iscrtava liniju duzine n na konzoli
 Console.WriteLine("".PadRight(n, '_'));
}

public static Random rnd = new Random();
// Generator je staticko polje klase Program

7

Poziv funkcije za spajanje nizova

static void Main(string[] args)
{
 int[] a1 = KreirajSortiraniNiz(4);
 int[] a2 = KreirajSortiraniNiz(5);

 int[] temp = Merge(a1,a2);

 PisiNiz(a1);
 Linija(70);
 PisiNiz(a2);
 Linija(70);

 PisiNiz(temp);

 Console.ReadLine();
}

8

Rezultat spajanja nizova

9

Algoritam Merge Sort

• Niz se rekurzivno deli na dva podniza sve dok dužina svakog podniza
ne postane 1

• Podnizovi dužine 1 smatraju se već sortiranima

• Sortirani podnizovi se zatim spajaju (merge), pri čemu se uvek bira
manji od trenutnih elemenata

• Postupak spajanja se ponavlja dok se ne dobije jedan potpuno
sortiran niz

10

Faza podele (Divide)

11

Spajanje leve polovine

12

Spajanje desne polovine

13

Finalno spajanje cele leve i desne polovine

14

15

Adaptirana funkcija Merge() – 1. deo

16

// Spaja dva sortirana niza
// Spaja dva sortirana podniza x[l..m] i x[m+1..r]
static void Merge(int[] x, int l, int m, int r)
{

// Dužine podnizova
int n1 = m - l + 1;
int n2 = r - m;

// Privremeni nizovi
 int[] L = new int[n1];

int[] R = new int[n2];

// Kopiranje podataka iz glavnog niza x u privremene nizove L i R
int i,j;

// Kopiranje prvog podniza x[l..m] u L
for (i = 0; i < n1; ++i)
{

L[i] = x[l + i];
}

// Kopiranje drugog podniza x[m+1..r] u R
for (j = 0; j < n2; ++j)
{

R[j] = x[m + 1 + j];
}

Adaptirana funkcija Merge() – 2. deo

17

// Resetovanje indeksa i i j na 0 kako bismo ih koristili za poređenje elemenata

// Indeks za prvi podniz L
i = 0;

// Indeks za drugi podniz R
j = 0;

// Indeks za glavni niz x
int k = l;

// Spajanje privremenih nizova nazad u glavni niz x[l..r]
while (i < n1 && j < n2)
{

// Poređenje elemenata iz L i R i smeštanje manjeg elementa u x
if (L[i] <= R[j])
{

x[k] = L[i];
i++;

}
else
{

x[k] = R[j];
j++;

}
// Pomeranje indeksa u glavnom nizu
k++;

}

Adaptirana funkcija Merge() – 3. deo

18

// Kopiranje preostalih elemenata iz L, ako postoje
while (i < n1)
{

x[k] = L[i];
i++;
k++;

}

// Kopiranje preostalih elemenata iz R, ako postoje
while (j < n2)
{

x[k] = R[j];
j++;
k++;

}
}

Rekurzivna funkcija Sort sa parametrima

19

static void Sort(int[] x, int l, int r)
{

// l predstavlja početak niza koji se trenutno sortira
// r predstavlja kraj niza koji se trenutno sortira
if (l < r)
{

// Pronalaženje srednjeg indeksa
int m = l + (r - l) / 2;

// Rekurzivno sortiranje prve i druge polovine
Sort(x, l, m);
Sort(x, m + 1, r);

// Spajanje sortiranih polovina
Merge(x, l, m, r);

}
}

Funkcija MergeSort()

20

public static void MergeSort(int[] x)
{

int n = x.Length;
// Pokretanje merge sort algoritma
Sort(x, 0, n - 1);

}

Pomoćna funkcija

21

static int[] KreirajNiz(int n)
{

Random rnd = new Random();
 int[] x = new int[n];

for (int i = 0; i < n; i++)
{

x[i] = rnd.Next(1, 101); // od 1 do 100
}

return x;
}

Poziv funkcije MergeSort()

22

static void Main()
{

int[] x = KreirajNiz(10);
Console.WriteLine("Niz pre sortiranja:");
PisiNiz(x);
Linija(70);
MergeSort(x);
Console.WriteLine("\nNiz posle sortiranja:");
PisiNiz(x);
Console.ReadLine();

}

Analiza MergeSort algoritma

• Niz od n elemenata se pri svakom koraku deli na dva dela, ukupno
približno log₂ n puta

• Nakon deljenja niz log₂ n puta dobijamo n podnizova dužine 1

• Vremenska složenost algoritma iznosi O(n log₂ n) i ista je u najboljem,
najgorem i prosečnom slučaju

• Najbolji slučaj – niz je već sortiran (ali složenost ostaje ista)

• Najgori slučaj – niz je potpuno nesortiran (složenost opet ista)

• MergeSort ne zavisi od rasporeda elemenata

23

Quick Sort algoritam

• Efikasan algoritam za sortiranjeTehnika „podeli pa vladaj”

• Ceo niz x[] se deli na dve particije: levu i desnu

• Svi elementi leve particije su manji od elementa koji se zove pivot

• Svi elementi desne particije su veći ili jednaki od pivot elementa

• Inicijalno se za pivot može uzeti bilo koji element niza, npr. prvi:
pivot = x[0]

• Svakim prolaskom kroz algoritam određuje se tačna pozicija
pivotaLeva i desna particija se zatim ponovo dele na nove particije na
isti način

24

Podela niza i podniza na particije

25

• low parametar označava početni indeks opsega niza koji delimo na
particije. U početku je low =0.

• high parametar označava krajnji indeks opsega niza opsega niza koji
delimo na particije. Na početku high =n-1

• U funkciji Particija, pivot se obično bira kao element na poziciji low

static int Particija(int[] x, int low, int high)

int pivot = x[low];
int left = low + 1;
int right = high;

Indeksi left i right

• Pivot se poredi sa elementima pomoću left i right indeksa

• Tokom particionisanja, petlja povećava index left dok ne pronađe element veći od pivota

• Petlja smanjuje index right dok ne pronađe element manji od pivota

• Kada se petlja završi, index left će biti pozicioniran iza poslednjeg elementa manjeg od
pivota

• Kada se petlja završi, index right će biti pozicioniran ispred poslednjeg elementa većeg od
pivota.

26

while (true)
{

 while (left <= right && x[left] < pivot)
{

left++;
}

 while (left <= right && x[right] > pivot)
{

right--;
}

Razmena elemenata na pozicijama left i right

• Ako je element na poziciji left manji ili jednak od elementa na poziciji
right, to znači da smo pronašli par elemenata koji treba razmeniti

• Razmenjujemo ove elemente kako bismo postigli delimično sortiranje
u odnosu na pivot

27

if (left <= right)
{

// razmeni elemente left i right
int temp = x[left];
x[left] = x[right];
x[right] = temp;

}

Indeks left preskače indeks right

• Kada indeks left postane veći od indeksa right to znači da smo došli do
tačke gde je left "preskočio" preko right

• Odnosno da smo prošli kroz ceo niz i postavili elemente u ispravan redosled
u odnosu na pivot

• Sada se pivot razmenjuje sa elementom na poziciji right jer znamo da je
right indeks sada postavljen tačno tamo gde treba biti pivot

28

else
{

//razmena pivota sa elementom na poziciji right
int temp = x[low];
x[low] = x[right];
x[right] = temp;
// vrati index pivota
return right;

}

Funkcija za particionisanje niza

29

static int Particija(int[] x, int low, int high)
{

int pivot = x[low];
int left = low + 1;
int right = high;

while (true)
{

 while (left <= right && x[left] < pivot)
{

left++;
}

 while (left <= right && x[right] > pivot)
{

right--;
}

if (left <= right)
{

// razmeni elemente left i right
int temp = x[left];
x[left] = x[right];
x[right] = temp;

}
else
{

//razmena pivota sa elementom na poziciji right
int temp = x[low];
x[low] = x[right];
x[right] = temp;
// vrati index pivota
return right;

}
}

}

Quick Sort algoritam

30

static void QuickSort(int[] x, int low, int high)
{

if (low < high)
{

 int pivotIndex = Particija(x, low, high);

 QuickSort(x, low, pivotIndex - 1);
 QuickSort(x, pivotIndex + 1, high);

}
}

Quick Sort algoritam

• Ako low nije veće ili jednako high, to znači da podniz ima više od jednog
elementa i da ga treba dalje sortirati

• Ako low postane veće od high, to znači da podniz ima jedan ili nijedan
element i ne zahteva dalje sortiranje

• Funkcija Particija bira pivot, podeli niz na dva dela (levo sa elementima
manjim od pivota, desno sa elementima većim od pivota) i vraća indeks gde
se pivot trenutno nalazi

• Nakon particionisanja, rekurzivno pozivamo QuickSort funkciju za levi
podniz, tj. podniz sa elementima manjim od pivota :
• QuickSort(x, low, pivotIndex - 1);

• Slično tome, rekurzivno pozivamo QuickSort funkciju za desni podniz, tj.
podniz sa elementima većim od pivota:
• QuickSort(x, pivotIndex + 1, high);

31

Poziv funkcije QuickSort()

32

static void Main()
{

int[] x = { 12, 4, 5, 6, 7, 3, 1, 15 };

Console.WriteLine("Originalni niz:");
StampajNiz(x);

 QuickSort(x, 0, x.Length - 1);

Console.WriteLine("\nSortirani niz:");
StampajNiz(x);

Console.ReadLine();
}

Poziv funkcije QuickSort()

33

Karakteristike Quick Sort algoritma

• Kada se dobro implementira, u praksi je uglavnom brži od Merge Sort
algoritma

• Prosečna vremenska složenost je O(n log n) u najboljem i u prosečnom
slučaju

• Najbolji slučaj nastaje kada pivot uvek deli niz na dva približno jednaka dela
• Najgora vremenska složenost je O(n²) ako je pivot uvek najmanji ili najveći

element (vrlo loša podela niza)
• Za već sortirani ili obrnuto sortirani niz, najgori slučaj se događa ako se

pivot bira kao prvi ili poslednji element, jer tada svaka podela pravi:
• jednu praznu particiju

• jednu particiju sa svim preostalim elementima
što vodi ka ukupno n + (n−1) + (n−2) + ... + 1 ≈ n²/2 operacija

34

Pitanje 1

35

Algoritam Quick Sort je:

a. iterativni algoritam
b. rekurzivni algoritam

Odgovor: b

Pitanje 2

36

Tehnika podeli pa vladaj nije karakteristična za sledeći algoritam soriranja:

a. Merge Sort
b. Selection sort
c. Quick sort

Odgovor: b

Pitanje 3

37

Prosečna vremenska složenost Quick Sort algoritma je:

a. O(n2)
b. O(n)
c. O(nlogn)

Odgovor: c

Pitanje 4

38

Kod Quick Sort algoritma svi elementi desne particije su:
a. veći od pivot elementa
b. manji od pivot elementa
c. mogu biti i veći i manji od pivot elementa

Odgovor: a

Pitanje 5

39

Koji algoritam koristi pristup "podeli pa vladaj" i spaja sortirane podnizove u jedan
sortirani niz?

a. QuickSort
b. MergeSort
c. BubbleSort

Odgovor: b

Pitanje 6

40

Koji algoritam koristi pivot za particionisanje niza na dva dela i rekurzivno sortira
podnizove?

a. QuickSort
b. MergeSort
c. InsertionSort

Odgovor: a

	Slide 1: Algoritmi sortiranja -2
	Slide 2: Spajanje sortiranih nizova u novi sortirani niz
	Slide 3: Spajanje sortiranih nizova
	Slide 4: Spajanje sortiranih nizova
	Slide 5: Spajanje sortiranih nizova
	Slide 6: Funkcija Merge() koja spaja sortirane nizove
	Slide 7: Pomoćne funkcije
	Slide 8: Poziv funkcije za spajanje nizova
	Slide 9: Rezultat spajanja nizova
	Slide 10: Algoritam Merge Sort
	Slide 11: Faza podele (Divide)
	Slide 12: Spajanje leve polovine
	Slide 13: Spajanje desne polovine
	Slide 14: Finalno spajanje cele leve i desne polovine
	Slide 15
	Slide 16: Adaptirana funkcija Merge() – 1. deo
	Slide 17: Adaptirana funkcija Merge() – 2. deo
	Slide 18: Adaptirana funkcija Merge() – 3. deo
	Slide 19: Rekurzivna funkcija Sort sa parametrima
	Slide 20: Funkcija MergeSort()
	Slide 21: Pomoćna funkcija
	Slide 22: Poziv funkcije MergeSort()
	Slide 23: Analiza MergeSort algoritma
	Slide 24: Quick Sort algoritam
	Slide 25: Podela niza i podniza na particije
	Slide 26: Indeksi left i right
	Slide 27: Razmena elemenata na pozicijama left i right
	Slide 28: Indeks left preskače indeks right
	Slide 29: Funkcija za particionisanje niza
	Slide 30: Quick Sort algoritam
	Slide 31: Quick Sort algoritam
	Slide 32: Poziv funkcije QuickSort()
	Slide 33: Poziv funkcije QuickSort()
	Slide 34: Karakteristike Quick Sort algoritma
	Slide 35: Pitanje 1
	Slide 36: Pitanje 2
	Slide 37: Pitanje 3
	Slide 38: Pitanje 4
	Slide 39: Pitanje 5
	Slide 40: Pitanje 6

