
Algoritmi sortiranja-1

Problem sortiranja

• Ako je dat niz neuređenih brojeva, treba preurediti brojeve tog niza
tako da oni obrazuju neopadajući niz

• a[0],a[1],....,a[n-1] inicijalni nesortirani niz

• a[0] <=a[1]<==,...<=a[n] sortirani niz

• Sortiranjem se postiže brže pronalaženje informacija nego u slučaju
nesortiranog skupa podataka

2

Algoritam Selection Sort

• Prolazak 1
• Pronađi najmanji od elemenata x[0], x[1],....,x[n-1]

• Pronađeni element razmeni sa x[0]

• Posle prvog prolaska x[0] će sadržati najmanju vrednost u nizu

3

n elemenata: x[0],x[1],....,x[n-2],x[n-1]

Niz x posle prvog prolaska

Niz x pre sortiranja

Prolazak 2

• Pronađi najmanji od elemenata x[1], x[2],....,x[n-1]

• Pronađeni element razmeni sa x[1]

• Posle drugog prolaska x[1] će sadržati drugu najmanju vrednost u nizu

4

Niz x pre drugog prolaska

Niz x posle drugog prolaska

Prolazak 3

• Pronađi najmanji od elemenata x[2], x[3],....,x[n-1]

• Pronađeni element razmeni sa x[2]

• Posle trećeg prolaska x[2] će sadržati treću najmanju vrednost u nizu

5

Niz x pre trećeg prolaska

Niz x posle trećeg prolaska

Prolazak n-1

• Nađi najmanji od elemenata x[n-2] i x[n-1]

• Pronađeni element razmeni sa x[n-2]

• Posle prolaska n-1 niz će biti sortiran

6

Niz x pre prolaska n-1

Niz x posle prolaska n-1
Niz je sortiran

Algoritam Selection Sort
static void SelectionSort(int[] x)
{
 int n = x.Length;
 int temp = 0;
 int minIndex = 0;

for (int i = 0; i < n - 1; i++)
 {
 minIndex = i;

for (int j = i + 1; j < n; j++)
 {
 if (x[j]<x[minIndex])
 {
 minIndex = j;
 }
 }

 if (i != minIndex)
 {
 temp = x[i];
 x[i] = x[minIndex];
 x[minIndex] = temp;
 }

 //Console.Write($"Prolazak: {i + 1}\t ");
 //PisiNiz(x);
 //Linija(80);

}
} 7

Pomoćne funkcije
static int[] KreirajNiz(int n)
{
 Random rnd = new Random();
 int[] x = new int[n];

for (int i = 0; i < n; i++)
 {

x[i] = rnd.Next(1, 101); // od 1 do 100
 }
 return x;
}
static void PisiNiz(int[] x)
{

for (int i = 0; i < x.Length; i++)
 {
 Console.Write(x[i] + "\t");
 }
 Console.WriteLine();
}

static void Linija(int n)
{

Console.WriteLine(new string('_', n));
}

8

Poziv algoritma za sortiranje
static void Main(string[] args)
{
 int[] x = KreirajNiz(10);
 Console.WriteLine("Niz pre sortiranja");
 PisiNiz(x);
 Linija(80);
 SelectionSort(x);
 Console.WriteLine("Niz nakon sortiranja");
 PisiNiz(x);
 Console.ReadLine();
}

9

Prikaz niza na kraju svakog prolaska

10

Analiza Selection Sort algoritma -1
• Prolazak 1:

• x[0] se upoređuje sa x[1], x[2],....,x[n-1]

• ukupno (n-1) upoređivanja

• Prolazak 2:
• x[1] se upoređuje sa x[2], x[3],....,x[n-1]

• ukupno (n-2) upoređivanja

• Prolazak n-2:
• x[n-3] se upoređuje sa x[n-2],x[n-1]

• ukupno 2 upoređivanja

• Prolazak n-1:
• x[n-2] se upoređuje sa x[n-1]

• ukupno 1 upoređivanje
11

Analiza Selection Sort algoritma -2

• Ukupno upoređivanja: 1 + 2 + ⋯ + 𝑛 − 1 =
𝑛

2
(𝑛 − 1)

• Vremenska kompleksnost algoritma: 𝑂(𝑛2)

• Sortiranje nije osetljivo na podatke koji se sortiraju, podaci mogu biti
sortirani u rastućem, opadajućem ili imati proizvoljan redosled

• U jednom prolasku samo jedna razmena
• malo pomeranje podataka

12

Algoritam Bubble Sort
• Susedni elementi se upoređuju i razmenjuju im se mesta ukoliko

redosled nije dobar

• Posle prvog prolaska najveći element niza dolazi na poslednju poziciju

13

Prvi prolazak - Bubble Sort

• Upoređuje se x[0] i x[1] ako je x[0] > x[1] razmeni im mesta

• Upoređuje se x[1] i x[2] ako je x[1] > x[2] razmeni im mesta

• Upoređuje se x[n-3] i x[n-2] ako je x[n-3] > x[n-2] razmeni im mesta

•

• Upoređuje se x[n-2] i x[n-1] ako je x[n-2] > x[n-1] razmeni im mesta

14

Drugi prolazak - Bubble Sort

• Upoređuje se x[0] i x[1] ako je x[0] > x[1] razmeni im mesta

• Upoređuje se x[1] i x[2] ako je x[1] > x[2] razmeni im mesta

• Upoređuje se x[n-4] i x[n-3] ako je x[n-4] > x[n-3] razmeni im mesta

•

• Upoređuje se x[n-3] i x[n-2] ako je x[n-3] >x[n-2] razmeni im mesta

15

Prolazak n-1

• Upoređuje se x[0] i x[1] ako je x[0] > x[1] razmeni im mesta

• Samo jedno poređenje

Pre prolaska n-1

Posle prolaska n-1

16

Primer Bubble Sort prolazak 1

45 > 23 razmeni im mesta

45 < 59, nema razmene

59 < 66, nema razmene

66 > 38, razmeni im mesta

66 > 12, razmeni im mesta

17

Primer n=6, sortiranje niza od 6 brojeva

18

i=0 j=0,1,2,3,4

0: n-i-2

upoređuje se x[j] i x[j + 1]

i=1

i=2

i=3

j=0,1,2,3

j=0,1,2

0: 6-0-2

0: 6-1-2

j=0,1

j=0i=4

0: 6-2-2

0: 6-3-2

0: 6-4-2

Prolazak Granice za j

Implementacija algoritma
static void BubbleSort(int[] x)
{

int n = x.Length;
for (int i = 0; i < n - 1; i++)
{

for (int j = 0; j < n - i - 1; j++)
{

// Uporedi susedne elemenate
 if (x[j] > x[j + 1])

{
// Zamena ako nisu u ispravnom redosledu
int temp = x[j];
x[j] = x[j + 1];
x[j + 1] = temp;

}
}
//Console.Write($"Prolazak: {i+1}\t");
//PisiNiz (x);
//Linija(70);

}
} 19

Sortiranje primenom Bubble Sort algoritma

20

Poboljšani Bubble Sort algoritam
static void BubbleSortRazmena(int[] x)
{

int n = x.Length;
bool imaRazmena; // Dodana varijabla za praćenje razmena

for (int i = 0; i < n - 1; i++)
{

imaRazmena = false; // Inicijalizujemo na false na pocetku svakog prolaza

for (int j = 0; j < n - i - 1; j++)
{

// Uporedi susedne elemente
 if (x[j] > x[j + 1])

{
// Zamena ako nisu u ispravnom redosledu
int temp = x[j];
x[j] = x[j + 1];
x[j + 1] = temp;

imaRazmena = true; // Postavi na true ako je doslo do razmene
}

}

// Ako nije bilo razmena, niz je vec sortiran
if (!imaRazmena)

break;

}
}

21

Analiza Bubble Sort algoritma -1

• Ako je niz već sortiran
• Samo jedan prolazak

• Ukupno n-1 poređenja

• 0 razmena

• Vremenska kompleksnost O(n)

• Ako je niz sortiran u opadajućem poretku
• n-1 prolazak

• Poređenja: (𝑛 − 1) + (𝑛 − 2) + ⋯ . + 2 + 1 = (𝑛 − 1)𝑛/2

• Razmena: (𝑛 − 1)𝑛/2

• Vremenska kompleksnost 𝑂(𝑛2)

1 + 2 + 3 + ⋯ + 𝑛 = 𝑛/2(𝑛 + 1) - suma aritmetičkog niza
22

Analiza Bubble Sort algoritma -2

• Podaci su slučajno raspoređeni

• Spoljašnja petlja se izvršava 𝑛 − 1 puta

• Unutrašnja petlja se izvršava 𝑛 − 𝑖 − 1

• Ukupan broj poređenja je suma aritmetičkog niza (n - 1) + (n - 2) + ... +
1, što je (n * (n - 1)) / 2.

• Vremenska kompleksnost 𝑂(𝑛2)

23

Algoritam Insertion Sort

• Niz x dužine 𝑛 se postupno sortira u 𝑛-1 prolazaka. U svakom prolasku se
produžava levi - sortirani dio niza za jedan element

• U 𝑖-tom prolasku se umeće element x[i] na njegovo pravo mesto između prvih
 𝑖 − 1 već uređenih elemenata u rastućem redosledu

• Element x[i] se smešta u promenljivu temp
• temp = x[i]

• Upoređuje se x[i-1] sa temp i ako je x[i-1]>temp, x[i-1] se pomera desno na poziciju x[i]

• Upoređuje se x[i-2] sa temp i ako je x[i-2]>temp, x[i-2] se pomera desno na poziciju x[i-1]

24

niz x

Prolazak 1

• Sortirani deo x[0]

• Nesortirani deo x[1],x[2],...x[n-1]

• Element x[1] se ubacuje u sortirani deo

25

Prolazak 2

• Sortirani deo x[0],x[1]

• Nesortirani deo x[2],x[3],...,x[n-1]

• Element x[2] ubacuje se u sortirani deo na odgovarajuću poziciju

26

Prolazak 3

• Sortirani deo x[0],x[1],x[2]

• Nesortirani deo x[3],x[4],...,x[n-1]

• Element x[3] ubacuje se u sortirani deo na odgovarajuću poziciju

27

Prolazak n-1

• Sortirani deo x[0],x[1],...,x[n-2]

• Nesortirani deo x[n-1]

• Element x[n-1] ubacuje se u sortirani deo na odgovarajuću poziciju

28

Niz je sortiran

Primer rada Insertion Sort algoritma –
Prvi prolazak

29

temp = 23 x[0]=45 >temp
45 pomeram desno, x[1] =45
na staroj poziciji broja 45 upisujem vrednost smeštenu u temp, x[0] =temp

Drugi prolazak

30

temp = 32 x[1]=45 >temp
45 pomeram desno, x[2] =45
x[0]=23 <temp, ne pomeram ga desno
na staroj poziciji broja 45 (koji je poslednji pomeren u desno)
upisujem vrednost smeštenu u temp, x[1] =32

Treći prolazak

31

temp = 10 x[2]=45 >temp
45 pomeram desno, x[3] =45
x[1] = 32 > temp
32 pomeram desno x[2] =32
x[0]=23 >temp pomeram desno x[1]=23

na staroj poziciji broja 23 (koji je poslednji pomeren u desno)
upisujem vrednost smeštenu u temp, x[0] =10

Implementacija algoritma

32

static void InsertionSort(int[] x)
{

int n = x.Length;

for (int i = 1; i < n; i++)
{

int temp = x[i];
int j = i - 1;

// pomeri elemente koji su veći od temp udesno
 while (j >= 0 && x[j] > temp)

{
x[j + 1] = x[j];
j--;

}

// Ubaci temp na odgovarajuce mesto
x[j + 1] = temp;
Console.Write($"Prolazak: {i}\t");
PisiNiz(x);
Linija(70);

}
}

Poziv algoritma

33

static void Main(string[] args)
{
 int[] x = { 45, 23, 32, 10,30,12, 66, 28 };
 Console.WriteLine("Niz pre sortiranja");
 PisiNiz(x);
 Linija(80);
 InsertionSort(x);
 Console.WriteLine("Niz nakon sortiranja");
 PisiNiz(x);
 Console.ReadLine();
}

Izvršavanje algoritma po koracima

34

Karakteristike Insertion Sort algoritma
• Algoritam započinje od drugog elementa u nizu (indeks 1), pa

spoljašnja petlja ide od i=1 do i=n−1.

• Za i = 1, unutrašnja petlja se izvršava najviše 1 put

• Za i=n-1 unutrašnja petlja se izvršava najviše n-1 put

• Ukupan broj izvršavanja unutarnje petlje može se aproksimirati
kao 1+2+3+…+(n−1), što je suma aritmetičkog niza, a to je
n⋅(n−1)/2.

• Vremenska kompleksnost 𝑂(𝑛2)

35

Pitanje 1

36

Za algoritam Selection Sort važi sledeće tvrđenje:
a. Vremenska kompleksnost je najmanja kada su podaci sortirani u rastućem

poretku
b. Vremenska kompleksnost je najmanja kada su podaci sortirani u rastućem

poretku
c. Vremenska kompleksnost ne zavisi od podataka

Odgovor: c

Pitanje 2

37

Ako upoređujemo Bubble Sort i Selection Sort algoritam veći broj razmena
vrednosti ima:
a. Bubble Sort
b. Selection Sort
c. Broj razmena je podjednak

Odgovor: a

Pitanje 3

38

Ako se radi sortiranje niza dužine n, algoritam Selection Sort ima sledeći broj
prolazaka:
a. n
b. n-1
c. n2

Odgovor: b

Pitanje 4

39

Kada se niz sortira korišćenjem Bubble Sort algoritma posle prvog prolaska:
a. Najveći element se nalazi na kraju niza
b. Najveći element se nalazi na početku niza
c. Najmanji element se nalazi na kraju niza

Odgovor: a

Pitanje 5

40

Kada se niz sortira korišćenjem Insertion Sort algoritma posle svakog prolaska:
a. Prvi element sortiranog dela ubacuje se u nesortirani deo
b. Prvi element nesortiranog dela ubacuje se u sortirani deo
c. Poslednji element nesortiranog dela ubacuje se u sortirani deo

Odgovor: b

Pitanje 6

41

Koji algoritam za sortiranje uvek pronalazi najmanji element u nesortiranom delu
niza i smešta ga na početak nesortiranog dela?
a. Bubble Sort
b. Selection Sort
c. Insertion Sort

Odgovor: b

Pitanje 7

42

Kako funkcioniše Insertion Sort algoritam?

a. Pronalazi najmanji element u nesortiranom delu i stavlja ga na početak
nesortiranog dela

b. Upoređuje susedne elemente i menja ih ako su u pogrešnom redosledu dok
najveći element "ispliva" na kraj

c. Ubacuje prvi element iz nesortiranog dela niza na odgovarajuće mesto unutar
sortiranog dela

Odgovor: c

Pitanje 8

43

Koji od sledećih algoritama pravi najmanji broj zamena elemenata tokom
sortiranja?

a. Insertion Sort
b. Bubble Sort
c. Selection Sort

Odgovor: c

	Slide 1: Algoritmi sortiranja-1
	Slide 2: Problem sortiranja
	Slide 3: Algoritam Selection Sort
	Slide 4: Prolazak 2
	Slide 5: Prolazak 3
	Slide 6: Prolazak n-1
	Slide 7: Algoritam Selection Sort
	Slide 8: Pomoćne funkcije
	Slide 9: Poziv algoritma za sortiranje
	Slide 10: Prikaz niza na kraju svakog prolaska
	Slide 11: Analiza Selection Sort algoritma -1
	Slide 12: Analiza Selection Sort algoritma -2
	Slide 13: Algoritam Bubble Sort
	Slide 14: Prvi prolazak - Bubble Sort
	Slide 15: Drugi prolazak - Bubble Sort
	Slide 16: Prolazak n-1
	Slide 17: Primer Bubble Sort prolazak 1
	Slide 18: Primer n=6, sortiranje niza od 6 brojeva
	Slide 19: Implementacija algoritma
	Slide 20: Sortiranje primenom Bubble Sort algoritma
	Slide 21: Poboljšani Bubble Sort algoritam
	Slide 22: Analiza Bubble Sort algoritma -1
	Slide 23: Analiza Bubble Sort algoritma -2
	Slide 24: Algoritam Insertion Sort
	Slide 25: Prolazak 1
	Slide 26: Prolazak 2
	Slide 27: Prolazak 3
	Slide 28: Prolazak n-1
	Slide 29: Primer rada Insertion Sort algoritma – Prvi prolazak
	Slide 30: Drugi prolazak
	Slide 31: Treći prolazak
	Slide 32: Implementacija algoritma
	Slide 33: Poziv algoritma
	Slide 34: Izvršavanje algoritma po koracima
	Slide 35: Karakteristike Insertion Sort algoritma
	Slide 36: Pitanje 1
	Slide 37: Pitanje 2
	Slide 38: Pitanje 3
	Slide 39: Pitanje 4
	Slide 40: Pitanje 5
	Slide 41: Pitanje 6
	Slide 42: Pitanje 7
	Slide 43: Pitanje 8

