Algoritmi sortiranja-1

Problem sortiranja

* Ako je dat niz neuredenih brojeva, treba preurediti brojeve tog niza
tako da oni obrazuju neopadajuci niz

* a[0],a[1],....,a[n-1] inicijalni nesortirani niz
e a[0] <=a[l]<==,...<=a[n] sortirani niz

e Sortiranjem se postize brze pronalazenje informacija nego u slucaju
nesortiranog skupa podataka

Algoritam Selection Sort

n elemenata: x[0],x[1],....,x[n-2],x[n-1]

* Prolazak 1

Niz x pre sortiranja

* Pronadi najmanji od elemenata x[0], x[1],....,x[n-1]

* Pronadeni element razmeni sa x[0]

* Posle prvog prolaska x[0] ¢e sadrzati najmanju vrednost u nizu

Niz x posle prvog prolaska

Prolazak 2

|_b | Niz x pre drugog prolaska
00 2, & A s n-2 n-1

* Pronadi najmanji od elemenata x[1], x[2],....,x[n-1]
* Pronadeni element razmeni sa x[1]
* Posle drugog prolaska x[1] ¢e sadrzati drugu najmanju vrednost u nizu

| Niz x posle drugog prolaska

rolazak 3

* Pronadi najmanji od elemenata x[2], x[3],....,x[n-1]

* Pronadeni element razmeni sa x[2]
* Posle treCeg prolaska x[2] ¢e sadrzati tre¢u najmanju vrednost u nizu

Niz x pre treceg prolaska

N

Niz x posle treceg prolaska

Prolazak n-1

* Nadi najmanji od elemenata x[n-2] i x[n-1]

* Pronadeni element razmeni sa x[n-2]

* Posle prolaska n-1 niz Ce biti sortiran

Niz x pre prolaska n-1

Niz x posle prolaska n-1
Niz je sortiran

Algoritam Selection Sort

static void SelectionSort(int[] x)
{

int n = x.Length;

int temp = 0;

int minIndex = 0;

for (int i =0; i < n - 1; i++)

{
minIndex = i;
for (int j =1 + 1; j < n; j++)
{
if (x[j]<x[minIndex])
{
minIndex = j;
}
}
if (i !'= minIndex)
{
temp = x[i];
x[1i] = x[minIndex];
x[minIndex] = temp;
}
//Console.Write($"Prolazak: {i + 1}\t ");
//PisiNiz(x);
//Linija(80);
}

Pomocne funkcije

static int[] KreirajNiz(int n)

{
Random rnd = new Random();
int[] x = new int[n];
for (int i = @; i < n; i++)
{
x[i] = rnd.Next(1, 101); // od 1 do 1090
}
return Xx;
}
static void PisiNiz(int[] x)
{
for (int 1 = @; i < x.Length; i++)
{
Console.Write(x[1i] + "\t");
}
Console.WritelLine();
¥

static void Linija(Cint n)

{
}

Console.WriteLine(new string('_', n));

D ° | . . °
OzIv algoritma za sortiranje
static void Main(string[] args)
{
int[] x = KreirajNiz(10);
Console.WriteLine("Niz pre sortiranja");
PisiNiz(x);
Linija(80);
SelectionSort(x);
Console.WritelLine("Niz nakon sortiranja");
PisiNiz(x);
Console.ReadlLine();
}
B ChUsers\Goran\source reposh ASPOE_DTVASPOE_01\bin\Debugh ASPOE_D1.exe - O >

Niz pre sortiranja
5 L Lo

Niz nakon sortiranja

Els ¥ L]
12 23 Eti

Prikaz niza na kraju svakog prolaska

B ChUsers\GoransourcelreposhASPOE_0TVASPOE_0T\bin\ Debugh ASPOE_01.exe - O >

pre sortiranja

La
Prolazak:
Prolazak:

Prolazak:

Prolazak:

Prolazak: 5

Analiza Selection Sort algoritma -1

* Prolazak 1:
e x[0] se uporeduje sa x[1], x[2],....,x[n-1]
e ukupno (n-1) uporedivanja
* Prolazak 2:
e x[1] se uporeduje sa x[2], x[3],....,x[n-1]
e ukupno (n-2) uporedivanja
* Prolazak n-2:
* Xx[n-3] se uporeduje sa x[n-2],x[n-1]
e ukupno 2 uporedivanja
* Prolazak n-1:
* X[n-2] se uporeduje sa x[n-1]
* ukupno 1 uporedivanje

Analiza Selection Sort algoritma -2

e Ukupno uporedivanja: 1+ 2+ -+ (n—1) = g(n —1)
* Vremenska kompleksnost algoritma: 0(n?)

 Sortiranje nije osetljivo na podatke koji se sortiraju, podaci mogu biti
sortirani u rastucem, opadajuc¢em ili imati proizvoljan redosled

* U jednom prolasku samo jedna razmena
* malo pomeranje podataka

Algoritam Bubble Sort

* Susedni elementi se uporeduju i razmenjuju im se mesta ukoliko
redosled nije dobar

* Posle prvog prolaska najvedi element niza dolazi na poslednju poziciju

0 1 2 e n-4 n-3 n-2 n-1

13

Prvi prolazak - Bubble Sort

e Uporeduje se x[0] i x[1] ako je x[0] > x[1] razmeni im mesta
e Uporeduje se x[1] i x[2] ako je x[1] > x[2] razmeni im mesta

e Uporeduje se x[n-3] i x|n-2] ako je x[n-3] > x[n-2] razmeni im mesta

e Uporeduje se x[n-2] i x[n-1] ako je x[n-2] > x[n-1] razmeni im mesta

I I I

0 1 2 n4n3112nl

Drugi prolazak - Bubble Sort

e Uporeduje se x
e Uporeduje se x
* Uporeduje se x

0] i x[1
1] i x[2]

ako je x[0] > x[1]
ako je x[1] > x[2]

n-4] i x

n-3] ako je x[n-4

razmeni im mesta
razmeni im mesta
> X[n-3] razmeni im mesta

* Uporeduje se x[n-3] i x[n-2] ako je x[n-3] >x[n-2] razmeni im mesta

[

[

L [T}

0

..... n-4 7 n-3 | n-2 n-1

Prolazak n-1

Pre prolaska n-1

EEEEEEEE

0 1 . R R n-4 '* n-3ﬁn-2 n-1

* Uporeduje se x[0] i x[1] ako je x[0] > x[1] razmeni im mesta
* Samo jedno poredenje

Posle prolaska n-1

[[T T T T 1]

O 0 2 g n-4 n3 n2 n-l

16

Primer Bubble Sort prolazak 1

45 25 59 66 38 12
a0 1 2 3 4 5

45 > 23 razmeni im mesta 23 45h 59 66 38 12
0 1 2 2 4 5

45 < 59, nema razmene

59 < 66, nema razmene

66 > 38, razmeni im mesta 23 45 59 38 96 12
0 1 ") 3 4 5

66 > 12, razmeni im mesta

25 45 59 38 |2 66

0 1 2 B 4 5

17

Primer n=6, sortiranje niza od 6 brojeva

Prolazak

1=0

=1

1=2

1=3
1=4

uporedujese x[jlix[j+1]

Granice za j

0,1

1,2

2,5

3,4

4.5

=0,1,2,3,4

0.1

1,2

2.3

3,4

0,1

1,2

2.3

0,1

1,2

0,1

0: 6-0-2

=0,1,2,3

0: 6-1-2

=0,1,2

0: 6-2-2

j=0,1

0: 6-3-2

J=0

0: 6-4-2

0: n-i-2

18

mplementacija algoritma

static void BubbleSort(int[] x)
{
int n = x.Length;
for (int 1 = 0; i < n - 1; i++)

{
for (int j =0; j<n-1i-1; j++)
{
// Uporedi susedne elemenate
if (x[j1 > x[j + 1D
{
// Zamena ako nisu u ispravnom redosledu
int temp = x[j];
x[j1 = x[j + 11;
x[j + 1] = temp;
¥
¥
//Console.Write($"Prolazak: {i+1}\t");
//PisiNiz (x);
//Linija(70);
¥

19

Sortiranje primenom Bubble Sort algoritma

CA\Users\goran\source\repr X

Pocetni niz:

Poboljsani Bubble Sort algoritam

static void BubbleSortRazmena(int[] x)

{
int n = x.Length;
bool imaRazmena; // Dodana varijabla za pracenje razmena
for (int i = 0; i <n - 1; i++)
{
imaRazmena = false; // Inicijalizujemo na false na pocetku svakog prolaza
for (int j =0; j<n-1-1; j++)
{
// Uporedi susedne elemente
if (x[j1 > x[j + 1D
{
// Zamena ako nisu u ispravnom redosledu
int temp = x[j];
x[j]1 = x[j + 11;
x[j + 1] = temp;
imaRazmena = true; // Postavi na true ako je doslo do razmene
}
}
// Ako nije bilo razmena, niz je vec sortiran
if (!imaRazmena)
break;
}
}

21

Analiza Bubble Sort algoritma -1

* Ako je niz vec sortiran
* Samo jedan prolazak
* Ukupno n-1 poredenja
* 0O razmena
* Vremenska kompleksnost O(n)

e Ako je niz sortiran u opadajucem poretku
* n-1 prolazak
* Poredenja:(n—1) + m—-2) +--.+2+1 = (n—1)n/2
* Razmena: (n — 1)n/2
* Vremenska kompleksnost O (n?)

1+2+3+--+n=n/2(n+ 1) -suma aritmetickog niza

Analiza Bubble Sort algoritma -2

* Podaci su slucajno rasporedeni
* Spoljasnja petlja se izvrsavan — 1 puta
* Unutrasnja petlja seizvrsavan —i —1

e Ukupan broj poredenja je suma aritmetickog niza (n-1)+(n-2)+... +
1,stoje(n*(n-1))/ 2.

* Vremenska kompleksnost 0 (n?)

Algoritam Insertion Sort

* Niz x duzine n se postupno sortira u n-1 prolazaka. U svakom prolasku se
produzava levi - sortirani dio niza za jedan element

* U i-tom prolasku se umece element x[i] na njegovo pravo mesto izmedu prvih
[— 1 vecC uredenih elemenata u rastu¢em redosledu

* Element x[i] se smesta u promenljivu temp
* temp = x|i]
* Uporeduje se x[i-1] sa temp i ako je x[i-1]>temp, x[i-1] se pomera desno na poziciju x[i]
* Uporeduje se x[i-2] sa temp i ako je x[i-2]>temp, x[i-2] se pomera desno na poziciju x[i-1]

Niz X

Prolazak 1

i

0 1 /A R LI SO n-2 n-1

e Sortirani deo x[0]
* Nesortirani deo x[1],x[2],...x[n-1]
* Element x[1] se ubacuje u sortirani deo

25

Prolazak 2

 Sortirani deo x[0],x[1]
* Nesortirani deo x[2],x[3],...,x[n-1]
* Element x[2] ubacuje se u sortirani deo na odgovarajucu poziciju

b
—

26

Prolazak 3

e

e Sortirani deo x[0],x[1],x[2]
* Nesortirani deo x[3],x[4],...,x[n-1]
* Element x[3] ubacuje se u sortirani deo na odgovarajucu poziciju

0 1 2 - n-2 n-1

27

Prolazak n-1

e Sortirani deo x[0],x[1],...,x[n-2]
* Nesortirani deo x[n-1]
* Element x[n-1] ubacuje se u sortirani deo na odgovarajucu poziciju

Niz je sortiran

28

Primer rada Insertion Sort algoritma —
Prvi prolazak

451 231 32| 10] 30| 12 l 66 | 28
0 | 2 3 4 5 6 7
temp = 23 x[0]=45 >temp
45 pomeram desno, x[1] =45
na staroj poziciji broja 45 upisujem vrednost smestenu u temp, x[0] =temp
23 45| 32| 10| 30| 12| 66 | 28
0 1 Y 3 4 5 6 1

29

Drugi prolazak

23 | 45 R R l 66 | 28
0 1 Y 3 4 D 6 i
temp =32 X[1]=45 >temp
45 pomeram desno, x[2] =45
X[0]=23 <temp, ne pomeram ga desno
na staroj poziciji broja 45 (koji je poslednji pomeren u desno)
upisujem vrednost smestenu u temp, x[1] =32
23 32| 451 10| 30| 12| 66 | 28
0 1 2 3 4 5 6 7

30

Treci prolazak

23 | 32 45[1 10| 30] 12] 66 28

0 1 2 2 - B 6 7

temp = 10 x[2]=45 >temp

45 pomeram desno, x[3] =45

x[1] =32 > temp

32 pomeram desno x[2] =32

x[0]=23 >temp pomeram desno x[1]=23

na staroj poziciji broja 23 (koji je poslednji pomeren u desno)
upisujem vrednost smestenu u temp, x[0] =10

101 23| 32| 45| 30| 12 I 00 | 28
0 1 2 3 4 5 6 7 51

Implementacija algoritma

static void InsertionSort(int[] x)

{
int n = x.Length;

for (int i = 1; i < n; i++)
{

int temp = x[i];

int j =1 - 1;

// pomeri elemente koji su veci od temp udesno
while (j >= 0 && x[j] > temp)
{
x[j + 1] = x[jl;
=
}

// Ubaci temp na odgovarajuce mesto
x[j + 1] = temp;
Console.Write($"Prolazak: {i}\t");
PisiNiz(x);

Linija(70);

32

Poziv algoritma

static void Main(string[] args)

{
int[] x = { 45, 23, 32, 10,30,12, 66, 28 };
Console.WriteLine("Niz pre sortiranja");
PisiNiz(x);
Linija(80);
InsertionSort(x);
Console.WriteLine("Niz nakon sortiranja");
PisiNiz(x);
Console.ReadlLine();

}

B Select Chlsers\Goranhsourcelreposi ASPOE_01WASPOE_01\bin\ Debugh ASPOE_01.exe - O >

iz pre sortiranja

= 4

Wiz nakon sortiranja
12 23

|zvrSavanje algoritma po koracima

C\Users\goran\source\rep: X

Pocetni niz:

Karakteristike Insertion Sort algoritma

* Algoritam zapocinje od drugog elementa u nizu (indeks 1), pa
spoljasnja petlja ide od i=1 do i=n-1.

e Za i =1, unutrasnja petlja se izvrsava najvise 1 put
e Za i=n-1 unutrasnja petlja se izvrsava najvise n-1 put

e Ukupan broj izvrsavanja unutarnje petlje moze se aproksimirati
kao 1+2+3+...+(n-1), Sto je suma aritmetickog niza, a to je
n-(n-1)/2.

* Vremenska kompleksnost 0 (n?)

Pitanje 1

Za algoritam Selection Sort vazi sledece tvrdenje:

a. Vremenska kompleksnost je najmanja kada su podaci sortirani u rastu¢em
poretku

b. Vremenska kompleksnost je najmanja kada su podaci sortirani u rastucem
poretku

c. Vremenska kompleksnost ne zavisi od podataka

Odgovor: c

Pitanje 2

Ako uporedujemo Bubble Sort i Selection Sort algoritam vedi broj razmena
vrednosti ima:

a. Bubble Sort

b. Selection Sort

c. Brojrazmena je podjednak

Odgovor: a

Pitanje 3

Ako se radi sortiranje niza duzine n, algoritam Selection Sort ima sledeci broj
prolazaka:

a. n

b. n-1

C. n?

Odgovor: b

Pitanje 4

Kada se niz sortira koris¢enjem Bubble Sort algoritma posle prvog prolaska:
a. Najveli element se nalazi na kraju niza

b. Najveli element se nalazi na pocCetku niza

c. Najmanji element se nalazi na kraju niza

Odgovor: a

Pitanje 5

Kada se niz sortira koris¢enjem Insertion Sort algoritma posle svakog prolaska:
a. Prvi element sortiranog dela ubacuje se u nesortirani deo

b. Prvi element nesortiranog dela ubacuje se u sortirani deo

c. Poslednji element nesortiranog dela ubacuje se u sortirani deo

Odgovor: b

Pitanje 6

Koji algoritam za sortiranje uvek pronalazi najmanji element u nesortiranom delu
niza i smesta ga na pocetak nesortiranog dela?

a. Bubble Sort

b. Selection Sort

c. Insertion Sort

Odgovor: b

Pitanje /

Kako funkcionise Insertion Sort algoritam?

a. Pronalazi najmanji element u nesortiranom delu i stavlja ga na pocetak
nesortiranog dela

b. Uporeduje susedne elemente i menja ih ako su u pogresnom redosledu dok
najveci element "ispliva" na kraj

c. Ubacuje prvi element iz nesortiranog dela niza na odgovarajuce mesto unutar
sortiranog dela

Odgovor: c

Pitanje 8

Koji od sledecih algoritama pravi najmanji broj zamena elemenata tokom
sortiranja?

a. Insertion Sort
b. Bubble Sort
c. Selection Sort

Odgovor: c

	Slide 1: Algoritmi sortiranja-1
	Slide 2: Problem sortiranja
	Slide 3: Algoritam Selection Sort
	Slide 4: Prolazak 2
	Slide 5: Prolazak 3
	Slide 6: Prolazak n-1
	Slide 7: Algoritam Selection Sort
	Slide 8: Pomoćne funkcije
	Slide 9: Poziv algoritma za sortiranje
	Slide 10: Prikaz niza na kraju svakog prolaska
	Slide 11: Analiza Selection Sort algoritma -1
	Slide 12: Analiza Selection Sort algoritma -2
	Slide 13: Algoritam Bubble Sort
	Slide 14: Prvi prolazak - Bubble Sort
	Slide 15: Drugi prolazak - Bubble Sort
	Slide 16: Prolazak n-1
	Slide 17: Primer Bubble Sort prolazak 1
	Slide 18: Primer n=6, sortiranje niza od 6 brojeva
	Slide 19: Implementacija algoritma
	Slide 20: Sortiranje primenom Bubble Sort algoritma
	Slide 21: Poboljšani Bubble Sort algoritam
	Slide 22: Analiza Bubble Sort algoritma -1
	Slide 23: Analiza Bubble Sort algoritma -2
	Slide 24: Algoritam Insertion Sort
	Slide 25: Prolazak 1
	Slide 26: Prolazak 2
	Slide 27: Prolazak 3
	Slide 28: Prolazak n-1
	Slide 29: Primer rada Insertion Sort algoritma – Prvi prolazak
	Slide 30: Drugi prolazak
	Slide 31: Treći prolazak
	Slide 32: Implementacija algoritma
	Slide 33: Poziv algoritma
	Slide 34: Izvršavanje algoritma po koracima
	Slide 35: Karakteristike Insertion Sort algoritma
	Slide 36: Pitanje 1
	Slide 37: Pitanje 2
	Slide 38: Pitanje 3
	Slide 39: Pitanje 4
	Slide 40: Pitanje 5
	Slide 41: Pitanje 6
	Slide 42: Pitanje 7
	Slide 43: Pitanje 8

