Analiza efikasnosti algoritma



Merenje vremena izvrsavanje algoritma

Broj ulaznih podataka — n
* npr. sortiranje niza od n elemenata

Posmatra se vreme izvrSavanja u zavisnosti od veliCine ulaza, tj. kako se vreme
izvrSavanja algoritma menja sa povecanjem broja ulaznih podataka

Manja velicina ulaza - krace vreme izvrSavanja algoritma

Veca velicina ulaza - duze vreme izvrSavanja algoritma

Kako se veliCina ulaza povecava, vreme izvrSavanja se takode povecava

e Ako se ulaz u algoritam duplira, vreme izvrSavanja moze:
* da se priblizno duplira (npr. algoritmi slozenosti O(n))
* da se poveca 4 puta (npr. O(n?))
e da se poveca 100 ili visSe puta (npr. eksponencijalni algoritmi)



Merenje vremena izvrsavanje algoritma

* Eksperimentalna metoda

* Implementacija algoritma u programskom jeziku
lzvrSavanje algoritma nad razlicitim ulazima
Belezenje vremena izvrSavanja
Zavisna od softvera i hardvera
* Posmatra se samo konacan broj ulaznih podataka

e Analiticka metoda
* Matematicka analiza vremena izvrSavanja u zavisnosti od veliCine ulaza
» Asimptotska analiza (O-notacija)
* Nezavisna od softvera i hardvera
* Razmatra sve moguce veliCine ulaza



Klasa Stopwatch

* Osnovne informacije
* Nalazi se u namespace-u System.Diagnostics
» Kreira se konstruktorom: Stopwatch t = new Stopwatch();

* Glavne metode
e Start() — pokre¢e merenje vremenskog intervala
e Stop() — zaustavlja merenje
* Reset() — resetuje tajmer

* Svojstva
* Elapsed — vraca TimeSpan sa ukupno proteklim vremenom

* ElapsedMilliseconds — vraéa broj milisekundi(nije preporucljivo za veoma kratka vremena —
koristiti ElapsedTicks)



Klasa Stopwatch

Stopwatch t = new Stopwatch();
t.Start();
TestMetoda(1000);

t.Stop();
Console.WritelLine(t.ElapsedMilliseconds);




Primer merenja vremena izvrsavanja algoritma

static void UgnjezdenePetlje(int[,] x, int n)
{
for (int i = 0; i < n; i++)

{
for (int j = 0; j < n; j++)
{

if (1 > j)
{
x[i, jl = 1;
}
}

}

}




Primer merenja vremena izvrsavanja algoritma

static void Main(string[] args)

{
int n = 1000; // menjas 2000,5000,10000

int[,] x = new int[n, n]; // matrica nxn

Stopwatch t = new Stopwatch();

t.Start();
UgnjezdenePetlje(x, n);
t.Stop(Q);

Console.WriteLine($"Vreme izvrsavanja za n = {n}: {t.ElapsedMilliseconds} ms");




Rezultati merenja vremena izvrsavanja metode
UgnjezdenePetlje ()

Broj ulaznih 1000 2000 5000 10000
parametara n

Vreme izvrSavanja | 6 20 127 462
[ms]

Napomena: Pri testiranju ne pokretati aplikaciju u debug modu nego sa CTRL + F5




Graficki prikaz vremena izvrsavanja algoritma

Merenje vremena izvrSavanja metode UgnjezdenePetlje()

Vreme izvrsavanja [ms]
N w KN
o (@] o
o (e] (e]

=
o
o

o

2000 4000 6000 8000 10000
n (broj ulaznih parametara)



Analiticko odredivanje vremena izvrsavanja
algoritma

e Algoritam se analizira korak po korak i odreduje se vreme njegovog
izvrsavanja

* Ne dobija se apsolutno precizno vreme izvrsavanja

* Ovakva analiza daje dovoljno dobru procenu za razumevanje
efikasnosti algoritma

* \\reme izvrSavanja algoritma posmatra se kao funkcija veliCine ulaznih
podataka

e 7a ulaz od n elemenata definise se funkcija T(n) koja pokazuje koliko
vremenskih jedinica traje izvrSavanje algoritma



Jedinicna instrukcija

* Jedini¢na instrukcija algoritma predstavlja osnovnu racunsku operaciju Cije
je vreme izvrsavanja konstantno

* Pretpostavlja se da se sve osnovne instrukcije algoritma izvrsavaju tokom
jedne vremenske jedinice

* Apsolutna vrednost vremenske jedinice nije bitna (ms, ps, ...) vazna je samo
konstantnost

* Tipicne jedinicne instrukcije algoritama su:
* dodela vrednosti promenljivoj
* poredenje vrednosti dve promenljive
e aritmeticke operacije
* logicke operacije
 ulazno/izlazne operacije



Vreme izvrsavanja ugnjezdenih petl]i

for (int 1 = 0; i < n; i++) // izvrsava se n puta
{ for (int j = 0; j < n; j++) // izvrsava se n puta

{ x[i, jl1 = 1; // jedinicéna instrukcija
} }

T(n)=n-n=n2




static int MinimalniClan(int[] x)

{

int jmin = 0; //
int xmin = x[0]; //
int i = 1; //

while (i < x.Length) //
{
if (x[i] < xmin) //
{

xmin = x[i]; //
jmin = i; //
¥
i++; //
¥
return jmin; //

1 instrukcija
1 instrukcija
1 instrukcija
izvrsava se n puta

izvrsava se n-1 puta

u najgorem slucaju n-1 puta
u najgorem slucaju n-1 puta

n-1 puta

1 instrukcija

Primer — indeks najmanjeg elementa niza

T(n)=3(inicijalizacije)

+n (provera while uslova)

+(n — 1) (ifuslov)

+2(n — 1) (dve naredbe u if—u)
+(n—1) (i++)

+1 (return)

T(n)=3+n+(n-1)+2(n-1)+(n-1)+1
T(n)=5n+1

13




O-zapis

* O-zapis se koristi za precizno definisanje pojma da je neka funkcija
manja od druge

 Za dve nenegativne funkcije f,g: N = R " kazemo da je
f(n) = 0(g(n)) ako postoje pozitivne konstane c i n,tako da je
f(n) < c*x g(n)zasvakon > n,

* Odnosno kazemo da funkcija g(n) predstavlja asimptotsku gornju
granicu za funkciju f(n)



O-zapis
Rate of Growth cg(n)

f(n)
A

f(n) < c* g(n)zasvakon > n,

» Input Size, n

f(n) predstavlja vreme izvrSavanja algoritma u zavisnosti od veli€ine ulaza n
O-zapis daje asimptotsku gornju granicu rasta funkcije f(n)
Ako je f(n) = O(g(n)), onda funkcija g(n) ogranicava rast funkcije f(n) (od no nadalje)

f(n) je veliko O od g(n)




Tipicne funkcije slozenosti poredane po rastucim brzinama rada

Funkcija Neformalno ime

1 konstantna funkcija

log n logaritamska funkcija

n linearna funkcija

nlogn linearno-logaritamska funkcija
n® kvadratna funkcija

n3 kubna funkcija

2" eksponencijalna funkcija




Pronalazenje velikog O

Ako je f(n) = c,
onda je f(n) = O(1)

Ako je f(n) = axn* + an* 1 + ... + ao,

onda je f(n) = O(n")

* zadrzava se najbrze rastudi ¢lan polinoma

Koeficijenti se ignorisu: ako je f(n) = k-g(n),

onda je f(n) = O(g(n))

Baza logaritma je nebitna: ako je f(n) = 8:logz(n),
onda je f(n) = O(log n)
Ako je f(n) = O(2"), algoritam je eksponencijalne sloZzenosti:

* nijedan polinom ne moze ograniciti rast 2"
* takvi algoritmi su Cesto neprakti¢ni za realne sisteme



Primeri odredivanja velikog O

 f(n) = 45 - 0(1)

* f(n) = 6n3 + 27log>n + 2n - 0O(n3)

* f(n) = 8logzn +7n + 6 - 0O(n)

* f(n) = n-logion + 5n + 81n? - 0(n?)

* f(n) = logan + n:logion - O(n log n)

* f(n)=3n+5n*+7n%+2" - 0(2")



Asimptotsko vreme izvrsavanja algoritama

for (int i = 0; i < n; i++)
{ T(n) =n%+ n
for (int j = 0; j < n; Jj++)
{ za veliko n dominira kvadratni ¢lan
ali, j] = eo;
, T(n) = O(n?)

for (int i = 0; i < n; i++)

{
}

a[i: i] = 1;




Asimptotsko vreme izvrsavanja algoritama

for (int i = 0; i < n; i++)
{
for (int j = @; j < n; j++) T(n) — n2
{
if (i ==3)
{ . .
} a[l) J] = 1; T(n) — O(nZ)
else
{
a[i) j] = 0;
}
}
}




Pitanje 1

Eksperimentalna metoda vremena izvrSavanja algoritma:

a. Ne zavisi od hardvera i softvera na kome se radi testiranje
b. Zavisi od hardvera i softvera na kome se radi testiranje
c. Zavisi iskljuCivo od broja ulaznih parametara

Odgovor: b



Pitanje 2

Jedinicna instrukcija algoritma ima:

a. Promenljivo vreme izvrsavanja
b. Konstantno vreme izvrsavanja

c. Vreme izvrSavanja koje zavisi od tipa algoritma

Odgovor: b



Pitanje 3

Ko asimptotske analize algoritma izraCunava se tacno vreme
izvrSavanja algoritma:

a. Da
b. Ne

Odgovor: b



Pitanje 4

Funkcija f(n) = 2n + 3n-log,(n) je veliko O za funkciju

a. 2n
b. n-log(n)
c. 3n-logz(n)

Odgovor: b



Pitanje 5

Funkcija f(n) = 3n? + 5n + 18 je veliko O za funkciju:

Odgovor: c



Pitanje 6

Vremenska slozenost algoritma koji se izvrsava za isto vreme bez obzira na broj
ulaznih parametara je:

a. 0(1)
b. O(n)
c. O(logn)

Odgovor: a



Pitanje /

Koja je vremenska slozenost sledeceg koda:

for (inti=0;i<n;i++)
{
ali] =0;
}
a. O(n2)
b. O(n)
c. O(1)

Odgovor: b




	Slide 1: Analiza efikasnosti algoritma
	Slide 2: Merenje vremena izvršavanje algoritma
	Slide 3: Merenje vremena izvršavanje algoritma
	Slide 4: Klasa Stopwatch 
	Slide 5: Klasa Stopwatch 
	Slide 6: Primer merenja vremena izvršavanja algoritma 
	Slide 7: Primer merenja vremena izvršavanja algoritma 
	Slide 8: Rezultati merenja vremena izvršavanja metode UgnjezdenePetlje ()
	Slide 9: Grafički prikaz vremena izvršavanja algoritma
	Slide 10: Analitičko određivanje vremena izvršavanja algoritma
	Slide 11: Jedinična instrukcija
	Slide 12: Vreme izvršavanja ugnježdenih petlji
	Slide 13: Primer – indeks najmanjeg elementa niza
	Slide 14: O-zapis
	Slide 15: O-zapis
	Slide 16: Tipične funkcije složenosti poređane po rastućim brzinama rada
	Slide 17: Pronalaženje velikog O
	Slide 18: Primeri određivanja velikog O
	Slide 19: Asimptotsko vreme izvršavanja algoritama
	Slide 20: Asimptotsko vreme izvršavanja algoritama
	Slide 21: Pitanje 1
	Slide 22: Pitanje 2
	Slide 23: Pitanje 3
	Slide 24: Pitanje 4
	Slide 25: Pitanje 5
	Slide 26: Pitanje 6
	Slide 27: Pitanje 7

