
Analiza efikasnosti algoritma

Merenje vremena izvršavanje algoritma

• Broj ulaznih podataka – n
• npr. sortiranje niza od n elemenata

• Posmatra se vreme izvršavanja u zavisnosti od veličine ulaza, tj. kako se vreme
izvršavanja algoritma menja sa povećanjem broja ulaznih podataka

• Manja veličina ulaza → kraće vreme izvršavanja algoritma

• Veća veličina ulaza → duže vreme izvršavanja algoritma

• Kako se veličina ulaza povećava, vreme izvršavanja se takođe povećava

• Ako se ulaz u algoritam duplira, vreme izvršavanja može:
• da se približno duplira (npr. algoritmi složenosti O(n))
• da se poveća 4 puta (npr. O(n²))
• da se poveća 100 ili više puta (npr. eksponencijalni algoritmi)

2

Merenje vremena izvršavanje algoritma

• Eksperimentalna metoda
• Implementacija algoritma u programskom jeziku
• Izvršavanje algoritma nad različitim ulazima
• Beleženje vremena izvršavanja
• Zavisna od softvera i hardvera
• Posmatra se samo konačan broj ulaznih podataka

• Analitička metoda
• Matematička analiza vremena izvršavanja u zavisnosti od veličine ulaza
• Asimptotska analiza (O-notacija)
• Nezavisna od softvera i hardvera
• Razmatra sve moguće veličine ulaza

3

Klasa Stopwatch

• Osnovne informacije
• Nalazi se u namespace-u System.Diagnostics

• Kreira se konstruktorom: Stopwatch t = new Stopwatch();

• Glavne metode
• Start() – pokreće merenje vremenskog intervala

• Stop() – zaustavlja merenje

• Reset() – resetuje tajmer

• Svojstva
• Elapsed – vraća TimeSpan sa ukupno proteklim vremenom

• ElapsedMilliseconds – vraća broj milisekundi(nije preporučljivo za veoma kratka vremena –
koristiti ElapsedTicks)

4

Klasa Stopwatch

5

Stopwatch t = new Stopwatch();
t.Start();
TestMetoda(1000);
t.Stop();
Console.WriteLine(t.ElapsedMilliseconds);

Primer merenja vremena izvršavanja algoritma

6

static void UgnjezdenePetlje(int[,] x, int n)
{

for (int i = 0; i < n; i++)
{

for (int j = 0; j < n; j++)
{

if (i > j)
{

x[i, j] = 1;
}

}
}

}

Primer merenja vremena izvršavanja algoritma

7

static void Main(string[] args)
{

int n = 1000; // menjaš 2000,5000,10000
int[,] x = new int[n, n]; // matrica n×n

Stopwatch t = new Stopwatch();

t.Start();
UgnjezdenePetlje(x, n);
t.Stop();

Console.WriteLine($"Vreme izvršavanja za n = {n}: {t.ElapsedMilliseconds} ms");
}

Rezultati merenja vremena izvršavanja metode
UgnjezdenePetlje ()

Broj ulaznih
parametara n

1000 2000 5000 10000

Vreme izvršavanja
[ms]

6 20 127 462

8

Napomena: Pri testiranju ne pokretati aplikaciju u debug modu nego sa CTRL + F5

Grafički prikaz vremena izvršavanja algoritma

9

Analitičko određivanje vremena izvršavanja
algoritma

• Algoritam se analizira korak po korak i određuje se vreme njegovog
izvršavanja

• Ne dobija se apsolutno precizno vreme izvršavanja

• Ovakva analiza daje dovoljno dobru procenu za razumevanje
efikasnosti algoritma

• Vreme izvršavanja algoritma posmatra se kao funkcija veličine ulaznih
podataka

• Za ulaz od n elemenata definiše se funkcija T(n) koja pokazuje koliko
vremenskih jedinica traje izvršavanje algoritma

10

Jedinična instrukcija

• Jedinična instrukcija algoritma predstavlja osnovnu računsku operaciju čije
je vreme izvršavanja konstantno

• Pretpostavlja se da se sve osnovne instrukcije algoritma izvršavaju tokom
jedne vremenske jedinice

• Apsolutna vrednost vremenske jedinice nije bitna (ms, μs, ...) važna je samo
konstantnost

• Tipične jedinične instrukcije algoritama su:
• dodela vrednosti promenljivoj
• poređenje vrednosti dve promenljive
• aritmetičke operacije
• logičke operacije
• ulazno/izlazne operacije

11

Vreme izvršavanja ugnježdenih petlji

for (int i = 0; i < n; i++) // izvršava se n puta
{

for (int j = 0; j < n; j++) // izvršava se n puta
{

x[i, j] = 1; // jedinična instrukcija
}

}

12

T(n)=n⋅n=n2

Primer – indeks najmanjeg elementa niza

13

static int MinimalniClan(int[] x)
{

int jmin = 0; // 1 instrukcija
int xmin = x[0]; // 1 instrukcija
int i = 1; // 1 instrukcija

while (i < x.Length) // izvršava se n puta
{

if (x[i] < xmin) // izvršava se n–1 puta
{

xmin = x[i]; // u najgorem slučaju n–1 puta
jmin = i; // u najgorem slučaju n–1 puta

}
i++; // n–1 puta

}

return jmin; // 1 instrukcija
}

T(n)=3(inicijalizacije)
+𝑛 (provera while uslova)
+ 𝑛 − 1 (if uslov)
+2 𝑛 − 1 (dve naredbe u if−u)
+ 𝑛 − 1 (i++)
+1 (return)

T(n)=3+n+(n−1)+2(n−1)+(n−1)+1
𝑇 𝑛 = 5𝑛 + 1

O-zapis

• O-zapis se koristi za precizno definisanje pojma da je neka funkcija
manja od druge

• Za dve nenegativne funkcije 𝑓, 𝑔: 𝑁 → 𝑅
+

kažemo da je
𝑓(𝑛) = 𝑂(𝑔(𝑛)) ako postoje pozitivne konstane 𝑐 i 𝑛0

tako da je
𝑓(𝑛) ≤ 𝑐 ∗ 𝑔(𝑛) za svako 𝑛 > 𝑛0

• Odnosno kažemo da funkcija 𝑔(𝑛) predstavlja asimptotsku gornju
granicu za funkciju 𝑓(𝑛)

14

O-zapis

15

𝑓(𝑛) ≤ 𝑐 ∗ 𝑔(𝑛) za svako 𝑛 > 𝑛0

f(n) predstavlja vreme izvršavanja algoritma u zavisnosti od veličine ulaza n
O-zapis daje asimptotsku gornju granicu rasta funkcije f(n)
Ako je f(n) = O(g(n)), onda funkcija g(n) ograničava rast funkcije f(n) (od n₀ nadalje)

f(n) je veliko O od g(n)

Tipične funkcije složenosti poređane po rastućim brzinama rada

Funkcija Neformalno ime

1 konstantna funkcija

log n logaritamska funkcija

n linearna funkcija

n log n linearno-logaritamska funkcija

n² kvadratna funkcija

n³ kubna funkcija

2ⁿ eksponencijalna funkcija

Pronalaženje velikog O

• Ako je f(n) = c,

onda je f(n) = O(1)

• Ako je f(n) = aₖnᵏ + aₖ₋₁nᵏ⁻¹ + … + a₀,

onda je f(n) = O(nᵏ)
• zadržava se najbrže rastući član polinoma

• Koeficijenti se ignorišu: ako je f(n) = k·g(n),

onda je f(n) = O(g(n))

• Baza logaritma je nebitna: ako je f(n) = 8·log₂(n),

onda je f(n) = O(log n)

• Ako je f(n) = O(2ⁿ), algoritam je eksponencijalne složenosti:
• nijedan polinom ne može ograničiti rast 2ⁿ
• takvi algoritmi su često nepraktični za realne sisteme

17

Primeri određivanja velikog O

• f(n) = 45 → O(1)

• f(n) = 6n³ + 27log₂n + 2n → O(n³)

• f(n) = 8log₂n + 7n + 6 → O(n)

• f(n) = n·log₁₀n + 5n + 81n² → O(n²)

• f(n) = log₂n + n·log₁₀n → O(n log n)

• f(n) = 3n + 5n² + 7n³ + 2ⁿ → O(2ⁿ)

18

Asimptotsko vreme izvršavanja algoritama

19

for (int i = 0; i < n; i++)
{
 for (int j = 0; j < n; j++)
 {
 a[i, j] = 0;
 }
}

for (int i = 0; i < n; i++)
{
 a[i, i] = 1;
}

T(n) = n2 + n

T(n) = O(n2)

za veliko n dominira kvadratni član

Asimptotsko vreme izvršavanja algoritama

20

for (int i = 0; i < n; i++)
{
 for (int j = 0; j < n; j++)
 {
 if (i ==j)
 {
 a[i, j] = 1;
 }
 else
 {
 a[i, j] = 0;
 }
 }
}

T(n) = n2

T(n) = O(n2)

Pitanje 1

21

Eksperimentalna metoda vremena izvršavanja algoritma:

a. Ne zavisi od hardvera i softvera na kome se radi testiranje
b. Zavisi od hardvera i softvera na kome se radi testiranje
c. Zavisi isključivo od broja ulaznih parametara

Odgovor: b

Pitanje 2

22

Jedinična instrukcija algoritma ima:

a. Promenljivo vreme izvršavanja
b. Konstantno vreme izvršavanja
c. Vreme izvršavanja koje zavisi od tipa algoritma

Odgovor: b

Pitanje 3

23

Ko asimptotske analize algoritma izračunava se tačno vreme
izvršavanja algoritma:

a. Da
b. Ne

Odgovor: b

Pitanje 4

24

Funkcija f(n) = 2n + 3n·log₂(n) je veliko O za funkciju

a. 2n
b. n·log(n)
c. 3n·log₂(n)

Odgovor: b

Pitanje 5

25

Funkcija f(n) = 3n² + 5n + 18 je veliko O za funkciju:

a. 2ⁿ
b. n
c. n²

Odgovor: c

Pitanje 6

26

Vremenska složenost algoritma koji se izvršava za isto vreme bez obzira na broj
ulaznih parametara je:

a. O(1)
b. O(n)
c. O(logn)

Odgovor: a

Pitanje 7

27

Koja je vremenska složenost sledećeg koda:

for (int i = 0; i < n; i++)
{
 a[i] = 0;
}
a. O(n2)
b. O(n)
c. O(1)

Odgovor: b

	Slide 1: Analiza efikasnosti algoritma
	Slide 2: Merenje vremena izvršavanje algoritma
	Slide 3: Merenje vremena izvršavanje algoritma
	Slide 4: Klasa Stopwatch
	Slide 5: Klasa Stopwatch
	Slide 6: Primer merenja vremena izvršavanja algoritma
	Slide 7: Primer merenja vremena izvršavanja algoritma
	Slide 8: Rezultati merenja vremena izvršavanja metode UgnjezdenePetlje ()
	Slide 9: Grafički prikaz vremena izvršavanja algoritma
	Slide 10: Analitičko određivanje vremena izvršavanja algoritma
	Slide 11: Jedinična instrukcija
	Slide 12: Vreme izvršavanja ugnježdenih petlji
	Slide 13: Primer – indeks najmanjeg elementa niza
	Slide 14: O-zapis
	Slide 15: O-zapis
	Slide 16: Tipične funkcije složenosti poređane po rastućim brzinama rada
	Slide 17: Pronalaženje velikog O
	Slide 18: Primeri određivanja velikog O
	Slide 19: Asimptotsko vreme izvršavanja algoritama
	Slide 20: Asimptotsko vreme izvršavanja algoritama
	Slide 21: Pitanje 1
	Slide 22: Pitanje 2
	Slide 23: Pitanje 3
	Slide 24: Pitanje 4
	Slide 25: Pitanje 5
	Slide 26: Pitanje 6
	Slide 27: Pitanje 7

