
Analiza efikasnosti algoritma



Merenje vremena izvršavanje algoritma

• Broj ulaznih podataka – n
• npr. sortiranje niza od n elemenata

• Posmatra se vreme izvršavanja u zavisnosti od veličine ulaza, tj. kako se vreme 
izvršavanja algoritma menja sa povećanjem broja ulaznih podataka

• Manja veličina ulaza → kraće vreme izvršavanja algoritma

• Veća veličina ulaza → duže vreme izvršavanja algoritma

• Kako se veličina ulaza povećava, vreme izvršavanja se takođe povećava

• Ako se ulaz u algoritam duplira, vreme izvršavanja može:
• da se približno duplira (npr. algoritmi složenosti O(n))
• da se poveća 4 puta (npr. O(n²))
• da se poveća 100 ili više puta (npr. eksponencijalni algoritmi)
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Merenje vremena izvršavanje algoritma

• Eksperimentalna metoda
• Implementacija algoritma u programskom jeziku
• Izvršavanje algoritma nad različitim ulazima
• Beleženje vremena izvršavanja
• Zavisna od softvera i hardvera
• Posmatra se samo konačan broj ulaznih podataka

• Analitička metoda
• Matematička analiza vremena izvršavanja u zavisnosti od veličine ulaza
• Asimptotska analiza (O-notacija)
• Nezavisna od softvera i hardvera
• Razmatra sve moguće veličine ulaza
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Klasa Stopwatch 

• Osnovne informacije
• Nalazi se u namespace-u System.Diagnostics

• Kreira se konstruktorom: Stopwatch t = new Stopwatch();

• Glavne metode
• Start() – pokreće merenje vremenskog intervala

• Stop() – zaustavlja merenje

• Reset() – resetuje tajmer

• Svojstva
• Elapsed – vraća TimeSpan sa ukupno proteklim vremenom

• ElapsedMilliseconds – vraća broj milisekundi(nije preporučljivo za veoma kratka vremena – 
koristiti ElapsedTicks)
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Klasa Stopwatch 
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Stopwatch t = new Stopwatch();
t.Start();
TestMetoda(1000);
t.Stop();
Console.WriteLine(t.ElapsedMilliseconds);



Primer merenja vremena izvršavanja algoritma 
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static void UgnjezdenePetlje(int[,] x, int n)
{

for (int i = 0; i < n; i++)
{

for (int j = 0; j < n; j++)
{

if (i > j)
{

x[i, j] = 1;
}

}
}

}



Primer merenja vremena izvršavanja algoritma 
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static void Main(string[] args)
{

int n = 1000;                     // menjaš 2000,5000,10000
int[,] x = new int[n, n];         // matrica n×n

Stopwatch t = new Stopwatch();

t.Start();
UgnjezdenePetlje(x, n);
t.Stop();

Console.WriteLine($"Vreme izvršavanja za n = {n}: {t.ElapsedMilliseconds} ms");
}



Rezultati merenja vremena izvršavanja metode 
UgnjezdenePetlje ()

Broj ulaznih 
parametara n

1000 2000 5000 10000

Vreme izvršavanja 
[ms]

6 20 127 462
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Napomena: Pri testiranju ne pokretati aplikaciju u debug modu nego sa CTRL + F5



Grafički prikaz vremena izvršavanja algoritma
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Analitičko određivanje vremena izvršavanja 
algoritma

• Algoritam se analizira korak po korak i određuje se vreme njegovog 
izvršavanja

• Ne dobija se apsolutno precizno vreme izvršavanja

• Ovakva analiza daje dovoljno dobru procenu za razumevanje 
efikasnosti algoritma

• Vreme izvršavanja algoritma posmatra se kao funkcija veličine ulaznih 
podataka

• Za ulaz od n elemenata definiše se funkcija T(n) koja pokazuje koliko 
vremenskih jedinica traje izvršavanje algoritma
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Jedinična instrukcija

• Jedinična instrukcija algoritma predstavlja osnovnu računsku operaciju čije 
je vreme izvršavanja konstantno

• Pretpostavlja se da se sve osnovne instrukcije algoritma izvršavaju tokom 
jedne vremenske jedinice

• Apsolutna vrednost vremenske jedinice nije bitna (ms, μs, ...) važna je samo 
konstantnost

• Tipične jedinične instrukcije algoritama su:
• dodela vrednosti promenljivoj
• poređenje vrednosti dve promenljive
• aritmetičke operacije
• logičke operacije
• ulazno/izlazne operacije
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Vreme izvršavanja ugnježdenih petlji

for (int i = 0; i < n; i++)        // izvršava se n puta
{

for (int j = 0; j < n; j++)    // izvršava se n puta
{

x[i, j] = 1;               // jedinična instrukcija
}

}
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T(n)=n⋅n=n2



Primer – indeks najmanjeg elementa niza
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static int MinimalniClan(int[] x)
{

int jmin = 0;        // 1 instrukcija
int xmin = x[0];     // 1 instrukcija
int i = 1;           // 1 instrukcija

while (i < x.Length) // izvršava se n puta
{

if (x[i] < xmin) // izvršava se n–1 puta
{

xmin = x[i]; // u najgorem slučaju n–1 puta
jmin = i;    // u najgorem slučaju n–1 puta

}
i++;             // n–1 puta

}

return jmin;         // 1 instrukcija
}

T(n)=3(inicijalizacije) 
+𝑛 (provera while uslova)
+ 𝑛 − 1 (if uslov)
+2 𝑛 − 1 (dve naredbe u if−u)
+ 𝑛 − 1 (i++)
+1 (return)

T(n)=3+n+(n−1)+2(n−1)+(n−1)+1 
𝑇 𝑛 = 5𝑛 + 1



O-zapis

• O-zapis se koristi za precizno definisanje pojma da je neka funkcija 
manja od druge

• Za dve nenegativne funkcije 𝑓, 𝑔: 𝑁 → 𝑅
+

kažemo da je 
𝑓(𝑛) = 𝑂(𝑔(𝑛)) ako postoje pozitivne konstane 𝑐 i 𝑛0 

tako da je
𝑓(𝑛)  ≤  𝑐 ∗  𝑔(𝑛) za svako 𝑛 >  𝑛0

• Odnosno kažemo da funkcija 𝑔(𝑛) predstavlja asimptotsku gornju 
granicu za funkciju 𝑓(𝑛)
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O-zapis
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𝑓(𝑛)  ≤  𝑐 ∗  𝑔(𝑛) za svako 𝑛 >  𝑛0

f(n) predstavlja vreme izvršavanja algoritma u zavisnosti od veličine ulaza n
O-zapis daje asimptotsku gornju granicu rasta funkcije f(n)
Ako je f(n) = O(g(n)), onda funkcija g(n) ograničava rast funkcije f(n) (od n₀ nadalje)

f(n) je veliko O od g(n)



Tipične funkcije složenosti poređane po rastućim brzinama rada

Funkcija Neformalno ime

1 konstantna funkcija

log n logaritamska funkcija

n linearna funkcija

n log n linearno-logaritamska funkcija

n² kvadratna funkcija

n³ kubna funkcija

2ⁿ eksponencijalna funkcija



Pronalaženje velikog O

• Ako je f(n) = c, 

onda je f(n) = O(1)

• Ako je f(n) = aₖnᵏ + aₖ₋₁nᵏ⁻¹ + … + a₀, 

onda je f(n) = O(nᵏ)
• zadržava se najbrže rastući član polinoma

• Koeficijenti se ignorišu: ako je f(n) = k·g(n), 

onda je f(n) = O(g(n))

• Baza logaritma je nebitna: ako je f(n) = 8·log₂(n), 

onda je f(n) = O(log n)

• Ako je f(n) = O(2ⁿ), algoritam je eksponencijalne složenosti:
• nijedan polinom ne može ograničiti rast 2ⁿ
• takvi algoritmi su često nepraktični za realne sisteme
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Primeri određivanja velikog O

• f(n) = 45                          →  O(1)

• f(n) = 6n³ + 27log₂n + 2n           →  O(n³)

• f(n) = 8log₂n + 7n + 6              →  O(n)

• f(n) = n·log₁₀n + 5n + 81n²         →  O(n²)

• f(n) = log₂n + n·log₁₀n            →  O(n log n)

• f(n) = 3n + 5n² + 7n³ + 2ⁿ          →  O(2ⁿ)
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Asimptotsko vreme izvršavanja algoritama
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for (int i = 0; i < n; i++)
{
    for (int j = 0; j < n; j++)
    {
        a[i, j] = 0;
    }
}

for (int i = 0; i < n; i++)
{
    a[i, i] = 1;
}

T(n) = n2 +  n  

T(n) = O(n2)

za veliko n dominira kvadratni član



Asimptotsko vreme izvršavanja algoritama
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for (int i = 0; i < n; i++)
{
    for (int j = 0; j < n; j++)
    {
        if (i ==j)
        {
            a[i, j] = 1;
        }
        else
        {
            a[i, j] = 0;
        }
    }
}

T(n) = n2

T(n) = O(n2)



Pitanje 1
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Eksperimentalna metoda vremena izvršavanja algoritma:

a. Ne zavisi od hardvera i softvera na kome se radi testiranje
b. Zavisi od hardvera i softvera na kome se radi testiranje
c. Zavisi isključivo od broja ulaznih parametara

Odgovor: b



Pitanje 2
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Jedinična instrukcija algoritma ima:

a. Promenljivo vreme izvršavanja
b. Konstantno vreme izvršavanja
c. Vreme izvršavanja koje zavisi od tipa algoritma

Odgovor: b



Pitanje 3
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Ko asimptotske analize algoritma izračunava se tačno vreme 
izvršavanja algoritma:

a. Da
b. Ne

Odgovor: b



Pitanje 4
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Funkcija f(n) = 2n + 3n·log₂(n) je veliko O za funkciju

a. 2n
b. n·log(n)
c. 3n·log₂(n)

Odgovor: b



Pitanje 5
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Funkcija f(n) = 3n² + 5n + 18 je veliko O za funkciju:

a. 2ⁿ
b. n
c. n²

Odgovor: c



Pitanje 6
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Vremenska složenost algoritma koji se izvršava za isto vreme bez obzira na broj 
ulaznih parametara je:

a. O(1)
b. O(n)
c. O(logn)

Odgovor: a



Pitanje 7
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Koja je vremenska složenost sledećeg koda:

for (int i = 0; i < n; i++)
{
    a[i] = 0;
}
a. O(n2)
b. O(n)
c. O(1)

Odgovor: b
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