
Prava pristupa članovima
klase

Definisanje prava pristupa članovima klase

2

Deklaracija Definicija

public pristup nije ograničen

private pristup je ograničen na klasu koja sadrži tog člana

internal pristup je ograničen na aplikaciju

protected Pristup je ograničen na članove klase i klase izvedenih

iz te klase

3

Ilustracija private prava pristupa

class Radnik
{

public string ime;
public string prezime;
private decimal plata;

}

Čitanje i setovanje privatnog člana unutar klase

4

internal class Radnik

{

public string ime;

public string prezime;

private decimal plata;

public decimal CitajPlatu()

{

return plata;

}

public void SetujPlatu(decimal plata)

{

this.plata = plata;

}

public void Stampaj()

{

Console.WriteLine($"Radnik {ime} {prezime} ima platu od {plata} dinara");

}

}

Indirektno setovanje privatnog člana klase

5

static void Main(string[] args)

{

Radnik r1 = new Radnik();

r1.ime = "Pera";

r1.prezime = "Peric";

r1.SetujPlatu(345567.678m);

r1.Stampaj();

Console.ReadLine();

}

6

Svojstva (Properties)

propfull Code Snnipet

internal class Radnik

{

public string ime;

public string prezime;

private decimal plata;

public decimal Plata

{

get { return plata; }

set { plata = value; }

}

public void Stampaj()

{

Console.WriteLine($"Radnik {ime} {prezime} ima platu od {plata} dinara");

}

}

7

Upotreba svojstva
static void Main(string[] args)

{

Radnik r1 = new Radnik();

r1.ime = "Pera";

r1.prezime = "Peric";

r1.Plata = 345567.678m; // set property

decimal iznos = r1.Plata; // get property

Console.WriteLine(iznos);

Console.ReadLine();

}

Automatska svojstva

8

internal class Radnik

{

public string ime;

public string prezime;

// automatsko svojstvo

public decimal Plata { get; set; }

public void Stampaj()

{

Console.WriteLine($"Radnik {ime} {prezime} ima platu od {Plata} dinara");

}

}

Definisanje klase korišćenjem automatskih svojstava

9

internal class Radnik

{

public string Ime { get; set; }

public string Prezime { get; set; }

// automatsko svojstvo

public decimal Plata { get; set; }

public void Stampaj()

{

Console.WriteLine($"Radnik {Ime} {Prezime} ima platu od {Plata} dinara");

}

}

Inicijalizator objekta

10

static void Main(string[] args)

{

Radnik r1 = new Radnik { Ime = "Pera", Prezime = "Peric", Plata = 345678.56m };

r1.Stampaj();

Console.ReadLine();

}

Inicijalizator objekta

• Kada kompajler naiđe na kod sa inicijalizatorom objekta, on ga interno
prevodi u sekvencu koraka:

• Poziva se konstruktor, ako se ne navede eksplicitno koji konstruktor
da se pozove poziva se podrazumevani (default) konstruktor bez
argumenata

• Nakon što je objekat kreiran (alocirana memorija i pozvan
konstruktor), kompajler postavlja vrednosti za svaki član objekta
pojedinačno

11

Postavljanje privatnog set aksesora

12

propg Code Snnipet

c450228a-3e1c-43b0-8e72-ad4ab089714d

internal class Osoba
{

public Guid Id { get; private set; }
public string Ime { get; set; }
public string Prezime { get; set; }

public Osoba()
{

this.Id = Guid.NewGuid();
}

}

Guid (Globaly Unique Identifier) je standardni tip za kreiranje jedinstvenih 128-bitnih vrednosti.

Pristup svojstvu koje može samo da se čita

13

static void Main(string[] args)
{

Osoba os1 = new Osoba
{

Ime = "Pera",
Prezime = "Peric"

};
//os1.Id = 1;
Console.WriteLine(os1.Id);
Console.ReadLine();

}

Anonimni tipovi podataka

• Anonimni tipovi su klase koje kompajler automatski generiše

• Anonimni tipovi se najčešće koriste za privremeno grupisanje skupa
svojstava za koje se ne mora kreirati nova formalna klasu

• Anonimni tip je tip koji nema svoje ime ali ima definisana svojstva

• Ključna reč var koristi se kada kompajler mora da zaključi stvarni tip
promenljive u vreme kompajliranja

14

Kreiranje anonimnog objekta

Ključna reč var ukazuje kompajleru da odredi tip na osnovu desne strane
izraza za inicijalizaciju. To može biti ugrađeni tip, anonimni tip ili korisnički
definisani tip podataka.

15

static void Main(string[] args)

{

var v = new { Ime = "Pera", Prezime = "Peric" };

Console.WriteLine(v.Ime + " " + v.Prezime);

Console.ReadLine();

}

Vrednosni i referentni tipovi
podataka

Vrednosni tipovi podataka

• Pri kopiranju vrednosnog tipa u memoriji se kreira nova promenljiva

• Promena vrednosti kod originala se ne odražava na kopiju i obratno

• Vrednosni tipovi se čuvaju na steku

17

static void Main(string[] args)
{

int x = 10;
int y = x;
x++;
Console.WriteLine("x={0}", x);
Console.WriteLine("y={0}", y);

}

Referentni tipovi

• Kreiraju se u memoriji koja se naziva hip

• Kada promenljivoj dodelimo referencu, ona jednostavno počinje da
pokazuje na objekat u memoriji

• Ako dvema promenljivama pridružimo istu referencu, obe pokazuju
na isti objekat

• Ako promenimo podatak u objektu, promene će se odnositi na sve
promenljive koje referenciraju objekat

18

Demonstracija referentnih tipova
class Osoba
{
 public string Ime { get; set; }
 public string Prezime { get; set; }

 public void Stampaj()
 {
 Console.WriteLine(Ime + " " + Prezime);
 }
}

static void Main(string[] args)
{
 Osoba os1 = new Osoba {Ime = "Pera", Prezime="Peric" };
 os1.Stampaj();

 Osoba os2 = os1;
 os2.Ime = "Mika";

 os1.Stampaj();
 Console.ReadLine();
}

19

Prenos parametara po vrednosti

20

public static void Promeni(int a)
{
 a++;
}

static void Main(string[] args)
{
 int i = 10;
 Console.WriteLine($"Pre prosledjivanja funkciji i={i}");
 Promeni(i);
 Console.WriteLine($"Posle prosledjivanja funkciji i={i}");
 Console.ReadLine();
}

Prenos vrednosnih tipova po referenci

21

public static void Promeni(ref int a)
{
 a++;
}

static void Main(string[] args)
{
 int i = 10;
 Console.WriteLine($"Pre prosledjivanja funkciji i={i}");
 Promeni(ref i);
 Console.WriteLine($"Posle prosledjivanja funkciji i={i}");
 Console.ReadLine();
}

Referenca kao ulazni parameter metode

22

class Osoba
{
 public string Ime { get; set; }
 public string Prezime { get; set; }
}

Referenca kao ulazni parameter metode

23

static void Main(string[] args)
{
 Osoba os1 = new Osoba { Ime = "Marko", Prezime = "Markovic" };
 Console.WriteLine(os1.Ime);
 PromeniIme(os1);
 Console.WriteLine(os1.Ime);
 Console.ReadLine();
}

static void PromeniIme(Osoba os)
{
 os.Ime += "test";
}

Izlazni parametri

• Koristi se ključna reč out da se naglasi da je parametar metode izlazni

• Sličan je ref parametru ali se koristi više za vraćanje vrednosti iz
metode a ne za prosleđivanje parametara metodi

• Korišćenjem out parametara metoda može vratiti više od jedne
vrednosti

24

Metoda sa izlaznim parametrima

25

static void Dodeli(out int a, out int b)
{

Console.WriteLine("Unesite prvi broj");
a = int.Parse(Console.ReadLine());

Console.WriteLine("Unesite drugi broj");
b = int.Parse(Console.ReadLine());

}

Poziv metode sa izlaznim parametrima

26

static void Main(string[] args)
{
 Dodeli(out int x, out int y);

Console.WriteLine($"x = {x}");
Console.WriteLine($"y = {y}");

Console.ReadLine();
}

Nullable tip
• Null vrednost se koristi za inicijalizaciju referentnog tipa podataka i ne može se dodeliti

vrednosnom tipu

• Kada promenljivoj dodelimo null referencu znači da ona nije inicijalizovana (tj. ne
pokazuje ni na šta)

• Nije dozvoljeno

• C# definiše modifikator koji se koristi da se promenljiva definiše kao nullable vrednost

• Koristi se modifikator ? koji naznačava da vrednosni tip može biti nullable

• Nullable tip se ponaša kao originalni vrednosni tip ali mu se može pridružiti null vrednost

• Dozvoljeno

• Nullable tipovi imaju HasValue i Value svojstva

27

int x = null;

int? x = null;

Upotreba nullable tipa
static void Main(string[] args)
{

int? x = null;
Console.WriteLine("Unesite broj x");

if (int.TryParse(Console.ReadLine(),out int x1))
{

x = x1;
}

if (x.HasValue)
{

Console.WriteLine(x.Value);
}
else
{

Console.WriteLine("X nije definisano");
}

Console.WriteLine("Pritisni ENTER za izlazak");
Console.ReadLine();

}

28

Pitanje 1

Svojstvo pridruženo privatnom članu klase mora imati i get i set aksesor:

a. Da
b. Ne

Odgovor: b

29

Pitanje 2

Definisanjem automatskog svojstvo zamenjuje se definicija:

a. privatnog polja klase i propertija koji poseduje get i set aksesor
b. privatnog polja i get aksesora
c. get i set aksesora nekog privatnog polja klase

Odgovor: a

30

Pitanje 3

Ako dve promenljive referentnog tipa upućuju na isti objekat i promeni se svojstvo
kroz jednu od njih, šta se dešava?

a. Promena se vidi samo kroz tu promenljivu
b. Promena se vidi kroz obe promenljive
c. Druga promenljiva ostaje nepromenjena

Odgovor: b

31

Pitanje 4

Koja ključna reč u C# označava da kompajler sam zaključi tip promenljive na osnovu
dodeljene vrednosti?

a. auto
b. var
c. dynamic

Odgovor: b

32

Pitanje 5

Šta radi izraz Guid.NewGuid()?

a. Vraća jedinstvenu 128-bitnu vrednost
b. Generiše slučajan broj tipa double između 0 i 1
c. Vraća null vrednost

Odgovor: a

33

Pitanje 6

Koja je glavna svrha svojstava (properties) u C#?

a. Omogućavaju kontrolisan pristup privatnim poljima klase
b. Služe za kreiranje novih objekata
c. Ubrzavaju izvršavanje programa

Odgovor: a

34

Pitanje 7

Koji od sledećih primera prikazuje automatsko svojstvo?

a. public int Broj { get { return broj; } set { broj = value; } }
b. public int Broj { get; set; }
c. private int broj;

Odgovor: b

35

	Slide 1: Prava pristupa članovima klase
	Slide 2: Definisanje prava pristupa članovima klase
	Slide 3: Ilustracija private prava pristupa
	Slide 4: Čitanje i setovanje privatnog člana unutar klase
	Slide 5: Indirektno setovanje privatnog člana klase
	Slide 6: Svojstva (Properties)
	Slide 7: Upotreba svojstva
	Slide 8: Automatska svojstva
	Slide 9: Definisanje klase korišćenjem automatskih svojstava
	Slide 10: Inicijalizator objekta
	Slide 11: Inicijalizator objekta
	Slide 12: Postavljanje privatnog set aksesora
	Slide 13: Pristup svojstvu koje može samo da se čita
	Slide 14: Anonimni tipovi podataka
	Slide 15: Kreiranje anonimnog objekta
	Slide 16: Vrednosni i referentni tipovi podataka
	Slide 17: Vrednosni tipovi podataka
	Slide 18: Referentni tipovi
	Slide 19: Demonstracija referentnih tipova
	Slide 20: Prenos parametara po vrednosti
	Slide 21: Prenos vrednosnih tipova po referenci
	Slide 22: Referenca kao ulazni parameter metode
	Slide 23: Referenca kao ulazni parameter metode
	Slide 24: Izlazni parametri
	Slide 25: Metoda sa izlaznim parametrima
	Slide 26: Poziv metode sa izlaznim parametrima
	Slide 27: Nullable tip
	Slide 28: Upotreba nullable tipa
	Slide 29: Pitanje 1
	Slide 30: Pitanje 2
	Slide 31: Pitanje 3
	Slide 32: Pitanje 4
	Slide 33: Pitanje 5
	Slide 34: Pitanje 6
	Slide 35: Pitanje 7

