Prava pristupa clanovima
klase

Definisanje prava pristupa clanovima klase

Deklaracija Definicija

public pristup nije ogranicen

private pristup je ograniCen na klasu koja sadrZi tog ¢lana

internal pristup je ogranicen na aplikaciju

protected Pristup je ogranicen na Clanove klase i klase izvedenih
iz te klase

llustracija private prava pristupa

class Radnik

{
public string ime;
public string prezime;
private decimal plata;

static void Main(string[] args)

{
Radnik rl = new Radnik();
rl.ime = "Pera”;
rl.prezime = "Peric”;
rl.plata = 57898.56m;|

¥

‘Radnik.plata’ is inaccessible due to its protection level

static void Main(string[] args)
{
Radnik rl = new Radnik();
rl.ime = "Pera”;
rl.prezime = "Peric"”;
rl.L"
CitajPlatu
Equals
GetHashCode
GetType

ime

v oo

prezime J (field) string Radnik.prezime

glitic ToString = 1 |

e

Citanje i setovanje privatnog &lana unutar klase

internal class Radnik

{
public string ime;
public string prezime;

private decimal plata;

public decimal CitajPlatu()

{

return plata;

public void SetujPlatu(decimal plata)

{
this.plata = plata;
}
public void Stampaj()
{
Console.WriteLine($"Radnik {ime} {prezime} ima platu od {plata} dinara");
}

Indirektno setovanje privatnog clana klase

static void Main(string[] args)

{
Radnik rl = new Radnik();
rl.ime = "Pera";
rl.prezime = "Peric";

rl.SetujPlatu(3u5567.678m);
rl.StampajQ);

Console.ReadLine();

Svojstva (Properties)

internal class Radnik

{

public string ime;

public string prezime;

private decimal plata;
public decimal Plata
{
get { return plata; }
set { plata = value; }

public void Stampaj()
{

Console.WriteLine($"Radnik {ime} {prezime} ima platu od {plata} dinara");

propfull Code Snnipet

Upotreba svojstva

static void Main(string[] args)

{
Radnik rl = new Radnik();
rl.ime = "Pera";
rl.prezime = "Peric";

rl.Plata = 3u45567.678m; // set property

decimal iznos = rl.Plata; // get property
Console.WriteLine(iznos);

Console.ReadLine();

Automatska svojstva

internal class Radnik

{
public string ime;

public string prezime;

// automatsko svojstvo

public decimal Plata { get; set; }

public void Stampaj()
{

Console.WriteLine($"Radnik {ime} {prezime} ima platu od {Plata} dinara");

Definisanje klase koris¢enjem automatskih svojstava

internal class Radnik

{

public string Ime { get; set; }

public string Prezime { get; set; }

// automatsko svojstvo

public decimal Plata { get; set; }

public void Stampaj()

{
Console.WriteLine($"Radnik {Ime} {Prezime} ima platu od {Plata} dinara");

Inicijalizator objekta

static void Main(string[] args)

{
Radnik rl = new Radnik { Ime = "Pera", Prezime = "Peric", Plata = 3uU45678.56m };
rl.StampajQ);

Console.ReadLine();

10

Inicijalizator objekta

» Kada kompajler naide na kod sa inicijalizatorom objekta, on ga interno
prevodi u sekvencu koraka:

* Poziva se konstruktor, ako se ne navede eksplicitno koji konstruktor
da se pozove poziva se podrazumevani (default) konstruktor bez
argumenata

* Nakon sto je objekat kreiran (alocirana memorija i pozvan
konstruktor), kompajler postavlja vrednosti za svaki clan objekta
pojedinacno

Postavljanje privatnog set aksesora

propg Code Snnipet

internal class Osoba

{
public Guid Id { get; private set; }
public string Ime { get; set; }
public string Prezime { get; set; }
public Osoba()
{

this.Id = Guid.NewGuid();

}

}

Guid (Globaly Unique Identifier) je standardni tip za kreiranje jedinstvenih 128-bitnih vrednosti.

c450228a-3elc-43b0-8e72-ad4ab089714d

Pristup svojstvu koje moze samo da se Cita

static void Main(string[] args)

{
Osoba o0sl = new Osoba
{
Ime = "Pera",
Prezime = "Peric"
¥
//0s1.Id = 1;

Console.WriteLine(osl.Id);
Console.ReadLine();

13

Anonimni tipovi podataka

* Anonimni tipovi su klase koje kompajler automatski generise

* Anonimni tipovi se najcesce koriste za privremeno grupisanje skupa
svojstava za koje se ne mora kreirati nova formalna klasu

* Anonimni tip je tip koji nema svoje ime ali ima definisana svojstva

* KljuCna rec var koristi se kada kompajler mora da zakljuci stvarni tip
promenljive u vreme kompajliranja

Kreiranje anonimnog objekta

static void Main(string[] args)

{
var v = new { Ime = "Pera", Prezime = "Peric" };
Console.WriteLine(v.Ime + " " + v.Prezime);
Console.ReadLine();

}

Kljucna rec var ukazuje kompajleru da odredi tip na osnovu desne strane
izraza za inicijalizaciju. To moze biti ugradeni tip, anonimni tip ili korisnicki
definisani tip podataka.

Vrednosni i referentni tipovi
podataka

Vrednosni tipovi podataka

* Pri kopiranju vrednosnog tipa u memoriji se kreira nova promenljiva
* Promena vrednosti kod originala se ne odrazava na kopiju i obratno
* Vrednosni tipovi se Cuvaju na steku

static void Main(string[] args)

{
int x
int y
X++;
Console.WriteLine("x={0}", Xx);
Console.WriteLine("y={0}", vy);

10;
X

Referentni tipovi

* Kreiraju se u memoriji koja se naziva hip

* Kada promenljivoj dodelimo referencu, ona jednostavno pocinje da
pokazuje na objekat u memoriji

* Ako dvema promenljivama pridruzimo istu referencu, obe pokazuju
na isti objekat

* Ako promenimo podatak u objektu, promene Ce se odnositi na sve
promenljive koje referenciraju objekat

Demonstracija referentnih tipova

class Osoba

{
public string Ime { get; set; }
public string Prezime { get; set; }
public void Stampaj()
{
Console.WriteLine(Ime + " " + Prezime);
}
}

static void Main(string[] args)

{

Osoba osl = new Osoba {Ime = "Pera", Prezime="Peric" };
osl.Stampaj();

Osoba 0s2 = o0sl;
0s2.Ime = "Mika";

osl.Stampaj();
Console.ReadlLine();

19

Prenos parametara po vrednosti

B chusers\gorantsource\repos\ Consolefpp@ ConsolefApptibiniDe.. — O >

p u b 1 i C St at i c VO i d P romen i (i nt d) Pre prosledjivanja funkciji i=18

{ Posle prosledjivanja funkciji i=1@

a++;

}

static void Main(string[] args)
{
int 1 = 10;
Console.WriteLine($"Pre prosledjivanja funkciji i={i}");
Promeni(i);
Console.WriteLine($"Posle prosledjivanja funkciji i={i}");
Console.ReadlLine();

Prenos vrednosnih tipova po referenci

public static void Promeni(ref int a)

{
}

a++;

static void Main(string[] args)
{
int 1 = 10;
Console.WriteLine($"Pre prosledjivanja funkciji i={i}");
Promeni(ref 1i);
Console.WriteLine($"Posle prosledjivanja funkciji i={i}");
Console.ReadlLine();

Referenca kao ulazni parameter metode

class Osoba

{
public string Ime { get; set; }
public string Prezime { get; set; }

}

Referenca kao ulazni parameter metode

static void PromeniIme(Osoba o0s)

{
}

os.Ime += "test";

static void Main(string[] args)

{
Osoba o0sl = new Osoba { Ime = "Marko", Prezime = "Markovic" };
Console.WriteLine(osl.Ime);
PromeniIme(osl);
Console.WriteLine(osl.Ime);
Console.ReadlLine();
}
B chusers\goranisourcelreposiCons.. — [ey

Marko

Markotest

1zlazni parametri

* Koristi se kljucna rec€ out da se naglasi da je parametar metode izlazni

e Slican je ref parametru ali se koristi vise za vra¢anje vrednosti iz
metode a ne za prosledivanje parametara metodi

e Koris¢enjem out parametara metoda moze vratiti vise od jedne
vrednosti

Metoda sa izlaznim parametrima

static void Dodeli(out int a, out int b)

{

Console.WritelLine("Unesite prvi broj");
a = int.Parse(Console.ReadLine());

Console.WriteLine("Unesite drugi broj");
b = int.Parse(Console.ReadLine());

Poziv metode sa izlaznim parametrima

static void Main(string[] args)

{
Dodeli(out int x, out int y);
Console.WriteLine($"x = {x}");
Console.WriteLine($"y = {y}");

Console.ReadLine();

Nullable tip

Null vrednost se koristi za inicijalizaciju referentnog tipa podataka i ne moze se dodeliti
vrednosnom tipu

Kada promenljivoj dodelimo null referencu znadi da ona nije inicijalizovana (tj. ne
pokazuje ni na sta)

Nije dozvoljeno int x = null;

C# definise modifikator koji se koristi da se promenljiva definise kao nullable vrednost
Koristi se modifikator ? koji naznacava da vrednosni tip moze biti nullable

Nullable tip se ponasa kao originalni vrednosni tip ali mu se moze pridruziti null vrednost
Dozvoljeno int? x = null;

Nullable tipovi imaju HasValue i Value svojstva

Upotreba nullable tipa

static void Main(string[] args)

{
int? x = null;
Console.WriteLine("Unesite broj x");

if (int.TryParse(Console.ReadlLine(),out int x1))
{

}

X = X1;
if (x.HasValue)
{
}
else

{
}

Console.WritelLine(x.Value);

Console.WriteLine("X nije definisano");

Console.WriteLine("Pritisni ENTER za izlazak");
Console.ReadLine();

28

Pitanje 1

Svojstvo pridruzeno privatnom clanu klase mora imati i get i set aksesor:

a. Da
b. Ne

Odgovor: b

Pitanje 2

Definisanjem automatskog svojstvo zamenjuje se definicija:

a. privatnog polja klase i propertija koji poseduje get i set aksesor
b. privatnog polja i get aksesora
c. getiset aksesora nekog privatnog polja klase

Odgovor: a

Pitanje 3

Ako dve promenljive referentnog tipa upucuju na isti objekat i promeni se svojstvo
kroz jednu od njih, sta se deSava?

a. Promena se vidi samo kroz tu promenljivu
b. Promena se vidi kroz obe promenljive
c. Druga promenljiva ostaje nepromenjena

Odgovor: b

Pitanje 4

Koja kljucna recC u C# oznacava da kompaijler sam zakljuci tip promenljive na osnovu
dodeljene vrednosti?

a. auto
b. var
c. dynamic

Odgovor: b

Pitanje 5

Sta radi izraz Guid.NewGuid()?

a. Vraca jedinstvenu 128-bitnu vrednost
b. Generise slucajan broj tipa double izmedu 0i 1
c. Vraca null vrednost

Odgovor: a

Pitanje 6

Koja je glavna svrha svojstava (properties) u C#?

a. Omogucavaju kontrolisan pristup privatnim poljima klase
b. Sluze za kreiranje novih objekata
c. Ubrzavaju izvrsavanje programa

Odgovor: a

Pitanje /

Koji od sledecih primera prikazuje automatsko svojstvo?

a. publicint Broj { get { return broj; } set { broj = value; } }
b. publicint Broj { get; set; }
c. private int broj;

Odgovor: b

	Slide 1: Prava pristupa članovima klase
	Slide 2: Definisanje prava pristupa članovima klase
	Slide 3: Ilustracija private prava pristupa
	Slide 4: Čitanje i setovanje privatnog člana unutar klase
	Slide 5: Indirektno setovanje privatnog člana klase
	Slide 6: Svojstva (Properties)
	Slide 7: Upotreba svojstva
	Slide 8: Automatska svojstva
	Slide 9: Definisanje klase korišćenjem automatskih svojstava
	Slide 10: Inicijalizator objekta
	Slide 11: Inicijalizator objekta
	Slide 12: Postavljanje privatnog set aksesora
	Slide 13: Pristup svojstvu koje može samo da se čita
	Slide 14: Anonimni tipovi podataka
	Slide 15: Kreiranje anonimnog objekta
	Slide 16: Vrednosni i referentni tipovi podataka
	Slide 17: Vrednosni tipovi podataka
	Slide 18: Referentni tipovi
	Slide 19: Demonstracija referentnih tipova
	Slide 20: Prenos parametara po vrednosti
	Slide 21: Prenos vrednosnih tipova po referenci
	Slide 22: Referenca kao ulazni parameter metode
	Slide 23: Referenca kao ulazni parameter metode
	Slide 24: Izlazni parametri
	Slide 25: Metoda sa izlaznim parametrima
	Slide 26: Poziv metode sa izlaznim parametrima
	Slide 27: Nullable tip
	Slide 28: Upotreba nullable tipa
	Slide 29: Pitanje 1
	Slide 30: Pitanje 2
	Slide 31: Pitanje 3
	Slide 32: Pitanje 4
	Slide 33: Pitanje 5
	Slide 34: Pitanje 6
	Slide 35: Pitanje 7

