
Enumeracije

Enumeracije

• Enumeracioni tip specificira skup imenovanih konstanti

• Prednosti korišćenja enumeracija:
• Lakše je održavanje koda jer se promenljivama dodeljuju samo očekivane

vrednosti

• Kod je lakše čitati jer se vrednostima dodeljuju imena koja je lako
identifikovati

• Lakše je pisanje koda jer IntelliSense prikazuje listu mogućih vrednosti koju
možemo koristiti

2

Enumercijski tip
Definiše se unutar klase ili unutar namespace-a.

Ne unutar metode.

3

class Program

{

enum Dan

{

Ponedeljak,

Utorak,

Sreda,

Cetvrtak,

Petak,

Subota,

Nedelja

}

static void Main(string[] args)

{

}

}

static void Main(string[] args)

{

Dan d = Dan.Petak;

Console.WriteLine(d);

int n = (int)d;

Console.WriteLine(n);

Console.ReadLine();

}

Enumercijski tip

4

class Program

{

enum Dan

{

Ponedeljak = 1,

Utorak,

Sreda,

Cetvrtak,

Petak,

Subota,

Nedelja

}

static void Main(string[] args)

{

Console.WriteLine("Unesite redni broj dana u nedelji 1-7");

int redniBroj = int.Parse(Console.ReadLine());

Dan unetiDan = (Dan)redniBroj;

Console.WriteLine(unetiDan);

Console.ReadLine();

}

}

Pitanje 1
Enumeracioni tip podataka se ne može definisati unutar:
a. klase
b. namespace
c. metode

Odgovor: c

5

Pitanje 2

Šta se ispisuje kao rezultat izvršavanja Main funkcije:

a. 0
b. 1
c. 2

Odgovor: b 6

class Program
{

enum Doba { Prolece, Leto, Jesen, Zima }

static void Main(string[] args)
{

Console.WriteLine((int)Doba.Leto);
Console.ReadLine();

}

}
}

Pitanje 3
Šta se ispisuje kao rezultat izvršavanja Main funkcije:

a. 0
b. Leto
c. 1

Odgovor: b 7

enum Doba { Prolece, Leto, Jesen, Zima }

static void Main(string[] args)

{

Doba d = (Doba)1;

Console.WriteLine(d);

Console.ReadLine();

}

Definisanje klase i kreiranje
objekata

Osnovni koncepti OOP-a

• Apstraktni tipovi podataka

• Enkapsulacija

• Nasleđivanje

• Polimorfizam

9

Apstraktni tipovi podataka

• Objekti iz realnog sveta se modeluju njihovom ponašanjem sa stanovišta
korisnika i ovaj koncept se naziva abstrakcija

• Pri abstrakciji sakrivaju se nepotrebni detalji objekata sa stanovišta
korisnika

• Abstraktni tip podataka je tip podataka kojim se predstavljaju objekti

• Ugrađeni (osnovni, primitivni tipovi podataka) npr. float, int, double...

• Ravnopravno se definišu korisnički definisani tipovi – apstraktni tipovi
podataka: TekuciRacun, Osoba, Student, …

• Proizvoljan broj primeraka nekog tipa i mogu se vršiti operacije nad njima

10

Enkapsulacija

• Enkapsulacija je sposobnost objekta da skriva svoje unutrašnje
podatke i implementacione detalje

• Grupisanje podataka i koda koji manipuliše podacima

• Enkapsulacija se ostvaruje korišćenjem klase kao novog tipa podataka

• Realizija nekog tipa podataka može i treba da se sakrije od ostatka
sistema tj. onih koji ga koriste

• Korisnicima se definiše šta se sa tipom može uraditi a način na koji se
to radi se skriva

11

Odnos klase i objekata

• Klasa :
• To je model koji opisuje kako kreirati objekat

• je kao "šematski plan(skica)"

• Sadrži podatke (polja) i metode

• Objekti:
• Objekat je predstava nekog entiteta iz realnog sveta

• Instance klase

• Može biti više objekata (instanci) klase

12

Primer klase i objekata

13

Klasa

Objekat

Objekat

"skica"

"kuća"

Funkcionalnosti enkapsulirane unutar klase

14

Properties

Methods

Events

Delegates

Constructors

Constants

Destructors

Enumerations

Fields

Dodavanje klase u Visual Studio 2022 okruženju

15

Desni klik na naziv projekta

Dodavanje klase u Visual Studio 2022 okruženju

16

Definisanje klase

17

internal class TekuciRacun
{

public string ime;
public string prezime;
public double stanje;

}

Kreiranje objekata

• Objekti su inicijalno neoznačeni

• Podrazumevana vrednost objekta je null

• Da bi se koristila promenljiva tipa klase, klasa se
mora instancirati

• Nova instanca klase kreira se korišćenjem operatora
new

18

Kreiranje objekata

• Operator new prouzrokuje da:

• CLR alocira memoriju za objekat

• poziva konstruktor da inicijalizuje objekat

• Da bi se pristupilo javnom članu klase koristi se ime instance iza koga
sledi operator tačka

19

Instanciranje klase (kreiranje objekata)

20

static void Main(string[] args)
{

TekuciRacun tr1 = new TekuciRacun();
tr1.ime = "Pera";
tr1.prezime = "Peric";
tr1.stanje = 12345.34;
Console.WriteLine($"Korisnik {tr1.ime} {tr1.prezime} ima {tr1.stanje}
dinara na racunu.");
Console.ReadLine();

}

Dodeljivanje null reference

21

public static void Stampaj(TekuciRacun tr)
{

Console.WriteLine($"Korisnik {tr.ime} {tr.prezime} ima {tr.stanje}
dinara na racunu.");

}

static void Main(string[] args)

{

TekuciRacun tr1 = new TekuciRacun();

tr1.ime = "Pera";

tr1.prezime = "Peric";

tr1.stanje = 12345.34;

Stampaj(tr1);

tr1 = null;

Stampaj(tr1);

Console.ReadLine();

}

Generisanje izuzetka od strane okruženja

22

Metode klase
• Metode klase predstavljaju funkcije – članice klase.

• Svaka metoda sadrži :

• tip podataka koga metoda vraća (ili void ukoliko ne vraća podatke)

• naziv(ime) metode

• listu parametara

• telo metode

• Ukoliko metoda vraća neku vrednost, onda se unutar tela metode mora pozvati naredba return.

23

public T nazivMetode(T1 param1, ..., TN paramN)

{

// telo metode

return rezultat;

}

Primeri metoda

24

public double Uplata(double iznos)

{

stanje += iznos;

return stanje;

}

public void Uplata(double iznos)

{

stanje += iznos;

}

public void Isplata(double iznos)

{

stanje -= iznos;

}

Klasa sa poljima i metodama

25

internal class TekuciRacun

{

public string ime;

public string prezime;

public double stanje;

public void Uplata(double iznos)

{

stanje += iznos;

}

public void Isplata(double iznos)

{

stanje -= iznos;

}

}

Pozivanje metoda klase

26

static void Main(string[] args)

{

TekuciRacun tr1 = new TekuciRacun();

tr1.ime = "Pera";

tr1.prezime = "Peric";

tr1.stanje = 12345.34;

Stampaj(tr1);

tr1.Uplata(45678.12);

Stampaj(tr1);

tr1.Isplata(12345.45);

Stampaj(tr1);

Console.ReadLine();

}

Klasa sa podrazumevanim konstruktorom

27

internal class TekuciRacun

{

public string ime;

public string prezime;

public double stanje;

public void Uplata(double iznos)

{

stanje += iznos;

}

public void Isplata(double iznos)

{

stanje -= iznos;

}

}

Definisanje parametarskog konstruktora

28

public TekuciRacun(string ime1, string prezime1, double stanje1)

{

ime = ime1;

prezime = prezime1;

stanje = stanje1;

}

public TekuciRacun(string ime, string prezime, double stanje)
{

this.ime = ime;
this.prezime = prezime;
this.stanje = stanje;

}

Klasa sa parametarskim konstruktorom

29

internal class TekuciRacun

{

public string ime;

public string prezime;

public double stanje;

public TekuciRacun(string ime, string prezime, double stanje)

{

this.ime = ime;

this.prezime = prezime;

this.stanje = stanje;

}

public void Uplata(double iznos)

{

stanje += iznos;

}

public void Isplata(double iznos)

{

stanje -= iznos;

}

}

Poziv podrazumevanog konstruktora

30

static void Main(string[] args)

{

TekuciRacun tr1 = new TekuciRacun();

Console.ReadLine();

}

Poziv parametarskog konstruktora

31

static void Main(string[] args)

{

TekuciRacun tr1 = new TekuciRacun("Pera", "Peric", 45678.12);

Stampaj(tr1);

Console.ReadLine();

}

Definisanje konstruktora bez parametara

32

public TekuciRacun()

{

}

Poziv konstruktora

33

static void Main(string[] args)
{

TekuciRacun tr1 = new TekuciRacun("Pera", "Peric", 45678.12);
Stampaj(tr1);

TekuciRacun tr2 = new TekuciRacun();
tr2.ime = "Mika";
tr2.prezime = "Mikic";
tr2.stanje = 34567.12;

Stampaj(tr2);
Console.ReadLine();

}

Poziv različitih konstruktora - rezultat

34

Metoda Stampaj() u klasi TekuciRacun

35

public void Uplata(double iznos)
{

stanje += iznos;
}
public void Isplata(double iznos)
{

stanje -= iznos;
}

public void Stampaj()
{

Console.WriteLine($"Korisnik {ime} {prezime} ima {stanje}
dinara na racunu.");

}

Poziv nove metode Stampaj()

36

static void Main(string[] args)
{

TekuciRacun tr1 = new TekuciRacun("Pera", "Peric", 45678.12);
tr1.Stampaj();

TekuciRacun tr2 = new TekuciRacun();
tr2.ime = "Mika";
tr2.prezime = "Mikic";
tr2.stanje = 34567.12;

tr2.Stampaj();
Console.ReadLine();

}

Pitanje 1

Sposobnost objekta da skriva svoje podatke i implementacione detalje naziva se:
a. abstrakcija
b. enkapsulacija
c. nasleđivanje

Odgovor: b

37

Pitanje 2

Klasa može sadržati:
a. samo podatke ili polja klase
b. samo metode ili funkcije klase
c. i polja i metode

Odgovor: c

38

Pitanje 3

Ako metoda klase ne vraća vrednost onda je njen povratni tip:
a. object
b. void
c. int

Odgovor: b

39

Pitanje 4
Neka je kreirana klasa Student i unutar nje konstruktor koji ima dva ulazna parametra.
Povratna vrednost konstruktora je tipa ?
a. int
b. objekat klase Student
c. void
d. konstruktor klase Student ne vraća nikakvu vrednost

Odgovor: d

40

Pitanje 5
Kada se unutar klase definiše konstruktor tada nastupa sledeća situacija:
a. klasa pored definisanog konstruktora ima I podrazumevani konstruktor
b. vrši se prebrisavanje podrazumevanog konstruktora definisanim

konstruktorom
c. generiše se greška jer klasa već ima podrazumevani konstruktor

Odgovor: b

41

Pitanje 6

Unutar klase moguće je definisati:
a. samo jedan konstruktor
b. najviše dva konstruktora
c. neograničeni broj konstruktora

Odgovor: c

42

	Slide 1: Enumeracije
	Slide 2: Enumeracije
	Slide 3: Enumercijski tip
	Slide 4: Enumercijski tip
	Slide 5: Pitanje 1
	Slide 6: Pitanje 2
	Slide 7: Pitanje 3
	Slide 8: Definisanje klase i kreiranje objekata
	Slide 9: Osnovni koncepti OOP-a
	Slide 10: Apstraktni tipovi podataka
	Slide 11: Enkapsulacija
	Slide 12: Odnos klase i objekata
	Slide 13: Primer klase i objekata
	Slide 14: Funkcionalnosti enkapsulirane unutar klase
	Slide 15: Dodavanje klase u Visual Studio 2022 okruženju
	Slide 16: Dodavanje klase u Visual Studio 2022 okruženju
	Slide 17: Definisanje klase
	Slide 18: Kreiranje objekata
	Slide 19: Kreiranje objekata
	Slide 20: Instanciranje klase (kreiranje objekata)
	Slide 21: Dodeljivanje null reference
	Slide 22: Generisanje izuzetka od strane okruženja
	Slide 23: Metode klase
	Slide 24: Primeri metoda
	Slide 25: Klasa sa poljima i metodama
	Slide 26: Pozivanje metoda klase
	Slide 27: Klasa sa podrazumevanim konstruktorom
	Slide 28: Definisanje parametarskog konstruktora
	Slide 29: Klasa sa parametarskim konstruktorom
	Slide 30: Poziv podrazumevanog konstruktora
	Slide 31: Poziv parametarskog konstruktora
	Slide 32: Definisanje konstruktora bez parametara
	Slide 33: Poziv konstruktora
	Slide 34: Poziv različitih konstruktora - rezultat
	Slide 35: Metoda Stampaj() u klasi TekuciRacun
	Slide 36: Poziv nove metode Stampaj()
	Slide 37: Pitanje 1
	Slide 38: Pitanje 2
	Slide 39: Pitanje 3
	Slide 40: Pitanje 4
	Slide 41: Pitanje 5
	Slide 42: Pitanje 6

